Cargando…

Establishment of a multi-parameters MRI model for predicting small lymph nodes metastases (<10 mm) in patients with resected pancreatic ductal adenocarcinoma

PURPOSE: To evaluate the potential role of MR findings and DWI parameters in predicting small regional lymph nodes metastases (with short-axis diameter < 10 mm) in pancreatic ductal adenocarcinomas (PDACs). METHODS: A total of 127 patients, 82 in training group and 45 in testing group, with histo...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Yan-Jie, Liu, Bo-Nan, Li, Xiao-Ting, Zhu, Hai-Tao, Wei, Yi-Yuan, Zhao, Bo, Sun, Shao-Shuai, Sun, Ying-Shi, Hao, Chun-Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9388457/
https://www.ncbi.nlm.nih.gov/pubmed/34800159
http://dx.doi.org/10.1007/s00261-021-03347-7
Descripción
Sumario:PURPOSE: To evaluate the potential role of MR findings and DWI parameters in predicting small regional lymph nodes metastases (with short-axis diameter < 10 mm) in pancreatic ductal adenocarcinomas (PDACs). METHODS: A total of 127 patients, 82 in training group and 45 in testing group, with histopathologically diagnosed PDACs who underwent pancreatectomy were retrospectively analyzed. PDACs were divided into two groups of positive and negative lymph node metastases (LNM) based on the pathological results. Pancreatic cancer characteristics, short axis of largest lymph node, and DWI parameters of PDACs were evaluated. RESULTS: Univariate and multivariate analyses showed that extrapancreatic distance of tumor invasion, short-axis diameter of the largest lymph node, and mean diffusivity of tumor were independently associated with small LNM in patients with PDACs. The combining MRI diagnostic model yielded AUCs of 0.836 and 0.873, and accuracies of 81.7% and 80% in the training and testing groups. The AUC of the MRI model for predicting LNM was higher than that of subjective MRI diagnosis in the training group (rater 1, P = 0.01; rater 2, 0.008) and in a testing group (rater 1, P = 0.036; rater 2, 0.024). Comparing the subjective diagnosis, the error rate of the MRI model was decreased. The defined LNM-positive group by the MRI model showed significantly inferior overall survival compared to the negative group (P = 0.006). CONCLUSIONS: The MRI model showed excellent performance for individualized and noninvasive prediction of small regional LNM in PDACs. It may be used to identify PDACs with small LNM and contribute to determining an appropriate treatment strategy for PDACs.