Cargando…
Assessing preoperative risk of STR in skull meningiomas using MR radiomics and machine learning
Our aim is to predict possible gross total and subtotal resections of skull meningiomas from pre-treatment T1 post contrast MR-images using radiomics and machine learning in a representative patient cohort. We analyse the accuracy of our model predictions depending on the tumor location within the s...
Autores principales: | Musigmann, Manfred, Akkurt, Burak Han, Krähling, Hermann, Brokinkel, Benjamin, Henssen, Dylan J. H. A., Sartoretti, Thomas, Nacul, Nabila Gala, Stummer, Walter, Heindel, Walter, Mannil, Manoj |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9388514/ https://www.ncbi.nlm.nih.gov/pubmed/35982218 http://dx.doi.org/10.1038/s41598-022-18458-4 |
Ejemplares similares
-
A magnetic resonance imaging based radiomics model to predict mitosis cycles in intracranial meningioma
por: Krähling, Hermann, et al.
Publicado: (2023) -
Testing the applicability and performance of Auto ML for potential applications in diagnostic neuroradiology
por: Musigmann, Manfred, et al.
Publicado: (2022) -
Radiomics for pseudoprogression prediction in high grade gliomas: added value of MR contrast agent
por: Mammadov, Orkhan, et al.
Publicado: (2022) -
Pseudoprogression prediction in high grade primary CNS tumors by use of radiomics
por: Ari, Asena Petek, et al.
Publicado: (2022) -
Radiomics-Based Prediction of TERT Promotor Mutations in Intracranial High-Grade Meningiomas
por: Akkurt, Burak Han, et al.
Publicado: (2023)