Cargando…
Semisupervised representative learning for measuring epidermal thickness in human subjects in optical coherence tomography by leveraging datasets from rodent models
SIGNIFICANCE: Morphological changes in the epidermis layer are critical for the diagnosis and assessment of various skin diseases. Due to its noninvasiveness, optical coherence tomography (OCT) is a good candidate for observing microstructural changes in skin. Convolutional neural network (CNN) has...
Autores principales: | Ji, Yubo, Yang, Shufan, Zhou, Kanheng, Lu, Jie, Wang, Ruikang, Rocliffe, Holly R., Pellicoro, Antonella, Cash, Jenna L., Li, Chunhui, Huang, Zhihong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9388694/ https://www.ncbi.nlm.nih.gov/pubmed/35982528 http://dx.doi.org/10.1117/1.JBO.27.8.085002 |
Ejemplares similares
-
Deep-learning approach for automated thickness measurement of epithelial tissue and scab using optical coherence tomography
por: Ji, Yubo, et al.
Publicado: (2022) -
Online Coregularization for Multiview Semisupervised Learning
por: Sun, Boliang, et al.
Publicado: (2013) -
Self-Trained LMT for Semisupervised Learning
por: Fazakis, Nikos, et al.
Publicado: (2016) -
Spatial resolution in dynamic optical coherence elastography
por: Kirby, Mitchell A., et al.
Publicado: (2019) -
Semisupervised Generative Autoencoder for Single-Cell Data
por: Trong, Trung Ngo, et al.
Publicado: (2020)