Cargando…
Hypoxia-Ischemia-Mediated Effects on Neurodevelopmentally-Regulated Cold-Shock Proteins in Neonatal Mice Under Strict Temperature Control
BACKGROUND: Neonates have high levels of cold-shock proteins (CSPs) in the normothermic brain for a limited period following birth. Hypoxic-ischemic (HI) insults in term infants produce neonatal encephalopathy (NE), and it remains unclear if HI-induced pathology alters baseline CSP expression in the...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9388702/ https://www.ncbi.nlm.nih.gov/pubmed/35184138 http://dx.doi.org/10.1038/s41390-022-01990-4 |
Sumario: | BACKGROUND: Neonates have high levels of cold-shock proteins (CSPs) in the normothermic brain for a limited period following birth. Hypoxic-ischemic (HI) insults in term infants produce neonatal encephalopathy (NE), and it remains unclear if HI-induced pathology alters baseline CSP expression in the normothermic brain. METHODS: Here we established a version of the Rice-Vannucci model in PND 10 mice that incorporates rigorous temperature control. RESULTS: Common carotid artery (CCA)-ligation plus 25 min hypoxia (8% O(2)) in pups with targeted normothermia resulted in classic histopathological changes including increased hippocampal degeneration, astrogliosis, microgliosis, white matter changes, and cell signaling perturbations. Serial assessment of cortical, thalamic, and hippocampal RNA-binding motif 3 (RBM3), cold-inducible RNA binding protein (CIRBP), and reticulon-3 (RTN3) revealed a rapid age-dependent decrease in levels in sham and injured pups. CSPs were minimally affected by HI and the age point of lowest expression (PND 18) coincided with the timing at which heat-generating mechanisms mature in mice. CONCLUSION: The findings suggest the need to determine if optimized therapeutic hypothermia (depth and duration) can prevent the age-related decline in neuroprotective CSPs like RBM3 in the brain, and improve outcome during critical phases of secondary injury and recovery after NE. |
---|