Cargando…
Comparison of 3DCRT and IMRT out-of-field doses in pediatric patients using Monte Carlo simulations with treatment planning system calculations and measurements
3DCRT and IMRT out-of-field doses in pediatric patients were compared using Monte Carlo simulations with treatment planning system calculations and measurements. PURPOSE: Out-of-field doses are given to healthy tissues, which may allow the development of second tumors. The use of IMRT in pediatric p...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9388939/ https://www.ncbi.nlm.nih.gov/pubmed/35992845 http://dx.doi.org/10.3389/fonc.2022.879167 |
_version_ | 1784770325006778368 |
---|---|
author | Sá, Ana Cravo Barateiro, Andreia Bednarz, Bryan P. Almeida, Pedro Vaz, Pedro Madaleno, Tiago |
author_facet | Sá, Ana Cravo Barateiro, Andreia Bednarz, Bryan P. Almeida, Pedro Vaz, Pedro Madaleno, Tiago |
author_sort | Sá, Ana Cravo |
collection | PubMed |
description | 3DCRT and IMRT out-of-field doses in pediatric patients were compared using Monte Carlo simulations with treatment planning system calculations and measurements. PURPOSE: Out-of-field doses are given to healthy tissues, which may allow the development of second tumors. The use of IMRT in pediatric patients has been discussed, as it leads to a “bath” of low doses to large volumes of out-of-field organs and tissues. This study aims to compare out-of-field doses in pediatric patients comparing IMRT and 3DCRT techniques using measurements, Monte Carlo (MC) simulations, and treatment planning system (TPS) calculations. MATERIALS AND METHODS: A total dose of 54 Gy was prescribed to a PTV in the brain of a pediatric anthropomorphic phantom, for both techniques. To assess the out-of-field organ doses for both techniques, two treatment plans were performed with the 3DCRT and IMRT techniques in TPS. Measurements were carried out in a LINAC using a pediatric anthropomorphic phantom and thermoluminescent dosimeters to recreate the treatment plans, previously performed in the TPS. A computational model of a LINAC, the associated multileaf collimators, and a voxelized pediatric phantom implemented in the Monte Carlo N-Particle 6.1 computer program were also used to perform MC simulations of the out-of-field organ doses, for both techniques. RESULTS: The results obtained by measurements and MC simulations indicate a significant increase in dose using the IMRT technique when compared to the 3DCRT technique. More specifically, measurements show higher doses with IMRT, namely, in right eye (13,041 vs. 593 mGy), left eye (6,525 vs. 475 mGy), thyroid (79 vs. 70 mGy), right lung (37 vs. 28 mGy), left lung (27 vs. 20 mGy), and heart (31 vs. 25 mGy). The obtained results indicate that out-of-field doses can be seriously underestimated by TPS. DISCUSSION: This study presents, for the first time, out-of-field dose measurements in a realistic scenario and calculations for IMRT, centered on a voxelized pediatric phantom and an MC model of a medical LINAC, including MLC with log file-based simulations. The results pinpoint significant discrepancies in out-of-field doses for the two techniques and are a cause of concern because TPS calculations cannot accurately predict such doses. The obtained doses may presumably increase the risk of development of second tumors. |
format | Online Article Text |
id | pubmed-9388939 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-93889392022-08-20 Comparison of 3DCRT and IMRT out-of-field doses in pediatric patients using Monte Carlo simulations with treatment planning system calculations and measurements Sá, Ana Cravo Barateiro, Andreia Bednarz, Bryan P. Almeida, Pedro Vaz, Pedro Madaleno, Tiago Front Oncol Oncology 3DCRT and IMRT out-of-field doses in pediatric patients were compared using Monte Carlo simulations with treatment planning system calculations and measurements. PURPOSE: Out-of-field doses are given to healthy tissues, which may allow the development of second tumors. The use of IMRT in pediatric patients has been discussed, as it leads to a “bath” of low doses to large volumes of out-of-field organs and tissues. This study aims to compare out-of-field doses in pediatric patients comparing IMRT and 3DCRT techniques using measurements, Monte Carlo (MC) simulations, and treatment planning system (TPS) calculations. MATERIALS AND METHODS: A total dose of 54 Gy was prescribed to a PTV in the brain of a pediatric anthropomorphic phantom, for both techniques. To assess the out-of-field organ doses for both techniques, two treatment plans were performed with the 3DCRT and IMRT techniques in TPS. Measurements were carried out in a LINAC using a pediatric anthropomorphic phantom and thermoluminescent dosimeters to recreate the treatment plans, previously performed in the TPS. A computational model of a LINAC, the associated multileaf collimators, and a voxelized pediatric phantom implemented in the Monte Carlo N-Particle 6.1 computer program were also used to perform MC simulations of the out-of-field organ doses, for both techniques. RESULTS: The results obtained by measurements and MC simulations indicate a significant increase in dose using the IMRT technique when compared to the 3DCRT technique. More specifically, measurements show higher doses with IMRT, namely, in right eye (13,041 vs. 593 mGy), left eye (6,525 vs. 475 mGy), thyroid (79 vs. 70 mGy), right lung (37 vs. 28 mGy), left lung (27 vs. 20 mGy), and heart (31 vs. 25 mGy). The obtained results indicate that out-of-field doses can be seriously underestimated by TPS. DISCUSSION: This study presents, for the first time, out-of-field dose measurements in a realistic scenario and calculations for IMRT, centered on a voxelized pediatric phantom and an MC model of a medical LINAC, including MLC with log file-based simulations. The results pinpoint significant discrepancies in out-of-field doses for the two techniques and are a cause of concern because TPS calculations cannot accurately predict such doses. The obtained doses may presumably increase the risk of development of second tumors. Frontiers Media S.A. 2022-08-05 /pmc/articles/PMC9388939/ /pubmed/35992845 http://dx.doi.org/10.3389/fonc.2022.879167 Text en Copyright © 2022 Sá, Barateiro, Bednarz, Almeida, Vaz and Madaleno https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Oncology Sá, Ana Cravo Barateiro, Andreia Bednarz, Bryan P. Almeida, Pedro Vaz, Pedro Madaleno, Tiago Comparison of 3DCRT and IMRT out-of-field doses in pediatric patients using Monte Carlo simulations with treatment planning system calculations and measurements |
title | Comparison of 3DCRT and IMRT out-of-field doses in pediatric patients using Monte Carlo simulations with treatment planning system calculations and measurements |
title_full | Comparison of 3DCRT and IMRT out-of-field doses in pediatric patients using Monte Carlo simulations with treatment planning system calculations and measurements |
title_fullStr | Comparison of 3DCRT and IMRT out-of-field doses in pediatric patients using Monte Carlo simulations with treatment planning system calculations and measurements |
title_full_unstemmed | Comparison of 3DCRT and IMRT out-of-field doses in pediatric patients using Monte Carlo simulations with treatment planning system calculations and measurements |
title_short | Comparison of 3DCRT and IMRT out-of-field doses in pediatric patients using Monte Carlo simulations with treatment planning system calculations and measurements |
title_sort | comparison of 3dcrt and imrt out-of-field doses in pediatric patients using monte carlo simulations with treatment planning system calculations and measurements |
topic | Oncology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9388939/ https://www.ncbi.nlm.nih.gov/pubmed/35992845 http://dx.doi.org/10.3389/fonc.2022.879167 |
work_keys_str_mv | AT saanacravo comparisonof3dcrtandimrtoutoffielddosesinpediatricpatientsusingmontecarlosimulationswithtreatmentplanningsystemcalculationsandmeasurements AT barateiroandreia comparisonof3dcrtandimrtoutoffielddosesinpediatricpatientsusingmontecarlosimulationswithtreatmentplanningsystemcalculationsandmeasurements AT bednarzbryanp comparisonof3dcrtandimrtoutoffielddosesinpediatricpatientsusingmontecarlosimulationswithtreatmentplanningsystemcalculationsandmeasurements AT almeidapedro comparisonof3dcrtandimrtoutoffielddosesinpediatricpatientsusingmontecarlosimulationswithtreatmentplanningsystemcalculationsandmeasurements AT vazpedro comparisonof3dcrtandimrtoutoffielddosesinpediatricpatientsusingmontecarlosimulationswithtreatmentplanningsystemcalculationsandmeasurements AT madalenotiago comparisonof3dcrtandimrtoutoffielddosesinpediatricpatientsusingmontecarlosimulationswithtreatmentplanningsystemcalculationsandmeasurements |