Cargando…
Damage characterization of embedded defects in composites using a hybrid thermography, computational, and artificial neural networks approach
This work presents a hybrid thermography, computational, and Artificial Neural Networks (ANN) approach to characterize beneath the surface defects in composites. Computational simulations are created to model thermography experiments carried out on composite plates with controlled damage in the form...
Autores principales: | Al-Athel, Khaled S., Alhasan, Motaz M., Alomari, Ahmed S., Arif, Abul Fazal M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9389177/ https://www.ncbi.nlm.nih.gov/pubmed/35991970 http://dx.doi.org/10.1016/j.heliyon.2022.e10063 |
Ejemplares similares
-
Design and Development of Hybrid Al(2)O(3) Based Composites with Toughening and Self-Lubricating Second-Phase Inclusions
por: Akhtar, Syed Sohail, et al.
Publicado: (2019) -
Robust Principal Component Thermography for Defect Detection in Composites
por: Ebrahimi, Samira, et al.
Publicado: (2021) -
Data-Augmented Manifold Learning Thermography for Defect Detection and Evaluation of Polymer Composites
por: Liu, Kaixin, et al.
Publicado: (2022) -
Quantitative Evaluation of Pulsed Thermography, Lock-in Thermography and Vibrothermography on Foreign Object Defect (FOD) in CFRP
por: Liu, Bin, et al.
Publicado: (2016) -
Principal Component Thermography for Defect Detection in Concrete
por: Milovanović, Bojan, et al.
Publicado: (2020)