Cargando…

Peak frequency of the sensorimotor mu rhythm varies with autism-spectrum traits

Autism spectrum disorder (ASD) is a neurodevelopmental syndrome characterized by impairments in social perception and communication. Growing evidence suggests that the relationship between deficits in social perception and ASD may extend into the neurotypical population. In electroencephalography (E...

Descripción completa

Detalles Bibliográficos
Autores principales: Strang, Caroline C., Harris, Alison, Moody, Eric J., Reed, Catherine L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9389406/
https://www.ncbi.nlm.nih.gov/pubmed/35992926
http://dx.doi.org/10.3389/fnins.2022.950539
_version_ 1784770439754547200
author Strang, Caroline C.
Harris, Alison
Moody, Eric J.
Reed, Catherine L.
author_facet Strang, Caroline C.
Harris, Alison
Moody, Eric J.
Reed, Catherine L.
author_sort Strang, Caroline C.
collection PubMed
description Autism spectrum disorder (ASD) is a neurodevelopmental syndrome characterized by impairments in social perception and communication. Growing evidence suggests that the relationship between deficits in social perception and ASD may extend into the neurotypical population. In electroencephalography (EEG), high autism-spectrum traits in both ASD and neurotypical samples are associated with changes to the mu rhythm, an alpha-band (8–12 Hz) oscillation measured over sensorimotor cortex which typically shows reductions in spectral power during both one’s own movements and observation of others’ actions. This mu suppression is thought to reflect integration of perceptual and motor representations for understanding of others’ mental states, which may be disrupted in individuals with autism-spectrum traits. However, because spectral power is usually quantified at the group level, it has limited usefulness for characterizing individual variation in the mu rhythm, particularly with respect to autism-spectrum traits. Instead, individual peak frequency may provide a better measure of mu rhythm variability across participants. Previous developmental studies have linked ASD to slowing of individual peak frequency in the alpha band, or peak alpha frequency (PAF), predominantly associated with selective attention. Yet individual variability in the peak mu frequency (PMF) remains largely unexplored, particularly with respect to autism-spectrum traits. Here we quantified peak frequency of occipitoparietal alpha and sensorimotor mu rhythms across neurotypical individuals as a function of autism-spectrum traits. High-density 128-channel EEG data were collected from 60 participants while they completed two tasks previously reported to reliably index the sensorimotor mu rhythm: motor execution (bimanual finger tapping) and action observation (viewing of whole-body human movements). We found that individual measurement in the peak oscillatory frequency of the mu rhythm was highly reliable within participants, was not driven by resting vs. task states, and showed good correlation across action execution and observation tasks. Within our neurotypical sample, higher autism-spectrum traits were associated with slowing of the PMF, as predicted. This effect was not likely explained by volume conduction of the occipitoparietal PAF associated with attention. Together, these data support individual peak oscillatory alpha-band frequency as a correlate of autism-spectrum traits, warranting further research with larger samples and clinical populations.
format Online
Article
Text
id pubmed-9389406
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-93894062022-08-20 Peak frequency of the sensorimotor mu rhythm varies with autism-spectrum traits Strang, Caroline C. Harris, Alison Moody, Eric J. Reed, Catherine L. Front Neurosci Neuroscience Autism spectrum disorder (ASD) is a neurodevelopmental syndrome characterized by impairments in social perception and communication. Growing evidence suggests that the relationship between deficits in social perception and ASD may extend into the neurotypical population. In electroencephalography (EEG), high autism-spectrum traits in both ASD and neurotypical samples are associated with changes to the mu rhythm, an alpha-band (8–12 Hz) oscillation measured over sensorimotor cortex which typically shows reductions in spectral power during both one’s own movements and observation of others’ actions. This mu suppression is thought to reflect integration of perceptual and motor representations for understanding of others’ mental states, which may be disrupted in individuals with autism-spectrum traits. However, because spectral power is usually quantified at the group level, it has limited usefulness for characterizing individual variation in the mu rhythm, particularly with respect to autism-spectrum traits. Instead, individual peak frequency may provide a better measure of mu rhythm variability across participants. Previous developmental studies have linked ASD to slowing of individual peak frequency in the alpha band, or peak alpha frequency (PAF), predominantly associated with selective attention. Yet individual variability in the peak mu frequency (PMF) remains largely unexplored, particularly with respect to autism-spectrum traits. Here we quantified peak frequency of occipitoparietal alpha and sensorimotor mu rhythms across neurotypical individuals as a function of autism-spectrum traits. High-density 128-channel EEG data were collected from 60 participants while they completed two tasks previously reported to reliably index the sensorimotor mu rhythm: motor execution (bimanual finger tapping) and action observation (viewing of whole-body human movements). We found that individual measurement in the peak oscillatory frequency of the mu rhythm was highly reliable within participants, was not driven by resting vs. task states, and showed good correlation across action execution and observation tasks. Within our neurotypical sample, higher autism-spectrum traits were associated with slowing of the PMF, as predicted. This effect was not likely explained by volume conduction of the occipitoparietal PAF associated with attention. Together, these data support individual peak oscillatory alpha-band frequency as a correlate of autism-spectrum traits, warranting further research with larger samples and clinical populations. Frontiers Media S.A. 2022-08-05 /pmc/articles/PMC9389406/ /pubmed/35992926 http://dx.doi.org/10.3389/fnins.2022.950539 Text en Copyright © 2022 Strang, Harris, Moody and Reed. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Strang, Caroline C.
Harris, Alison
Moody, Eric J.
Reed, Catherine L.
Peak frequency of the sensorimotor mu rhythm varies with autism-spectrum traits
title Peak frequency of the sensorimotor mu rhythm varies with autism-spectrum traits
title_full Peak frequency of the sensorimotor mu rhythm varies with autism-spectrum traits
title_fullStr Peak frequency of the sensorimotor mu rhythm varies with autism-spectrum traits
title_full_unstemmed Peak frequency of the sensorimotor mu rhythm varies with autism-spectrum traits
title_short Peak frequency of the sensorimotor mu rhythm varies with autism-spectrum traits
title_sort peak frequency of the sensorimotor mu rhythm varies with autism-spectrum traits
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9389406/
https://www.ncbi.nlm.nih.gov/pubmed/35992926
http://dx.doi.org/10.3389/fnins.2022.950539
work_keys_str_mv AT strangcarolinec peakfrequencyofthesensorimotormurhythmvarieswithautismspectrumtraits
AT harrisalison peakfrequencyofthesensorimotormurhythmvarieswithautismspectrumtraits
AT moodyericj peakfrequencyofthesensorimotormurhythmvarieswithautismspectrumtraits
AT reedcatherinel peakfrequencyofthesensorimotormurhythmvarieswithautismspectrumtraits