Cargando…
Protocol for stratification of triple-negative breast cancer patients using in silico signaling dynamics
Personalized kinetic models can predict potential biomarkers and drug targets. Here, we provide a step-by-step approach for building an executable mathematical model from text and integrating transcriptomic datasets. We additionally describe the steps to personalize the mechanistic model and to stra...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9389415/ https://www.ncbi.nlm.nih.gov/pubmed/35990741 http://dx.doi.org/10.1016/j.xpro.2022.101619 |
Sumario: | Personalized kinetic models can predict potential biomarkers and drug targets. Here, we provide a step-by-step approach for building an executable mathematical model from text and integrating transcriptomic datasets. We additionally describe the steps to personalize the mechanistic model and to stratify patients with triple-negative breast cancer (TNBC) based on in silico signaling dynamics. This protocol can also be applied to any signaling pathway for patient-specific modeling. For complete details on the use and execution of this protocol, please refer to Imoto et al. (2022). |
---|