Cargando…

Prognostic risk stratification of gliomas using deep learning in digital pathology images

BACKGROUND: Evaluation of tumor-tissue images stained with hematoxylin and eosin (H&E) is pivotal in diagnosis, yet only a fraction of the rich phenotypic information is considered for clinical care. Here, we propose a survival deep learning (SDL) framework to extract this information to predict...

Descripción completa

Detalles Bibliográficos
Autores principales: Chunduru, Pranathi, Phillips, Joanna J, Molinaro, Annette M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9389424/
https://www.ncbi.nlm.nih.gov/pubmed/35990705
http://dx.doi.org/10.1093/noajnl/vdac111

Ejemplares similares