Cargando…
Prognostic risk stratification of gliomas using deep learning in digital pathology images
BACKGROUND: Evaluation of tumor-tissue images stained with hematoxylin and eosin (H&E) is pivotal in diagnosis, yet only a fraction of the rich phenotypic information is considered for clinical care. Here, we propose a survival deep learning (SDL) framework to extract this information to predict...
Autores principales: | Chunduru, Pranathi, Phillips, Joanna J, Molinaro, Annette M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9389424/ https://www.ncbi.nlm.nih.gov/pubmed/35990705 http://dx.doi.org/10.1093/noajnl/vdac111 |
Ejemplares similares
-
An independently validated nomogram for isocitrate dehydrogenase-wild-type glioblastoma patient survival
por: Gittleman, Haley, et al.
Publicado: (2019) -
Optimization of deep learning methods for visualization of tumor heterogeneity and brain tumor grading through digital pathology
por: Truong, An Hoai, et al.
Publicado: (2020) -
Deep learning super-resolution magnetic resonance spectroscopic imaging of brain metabolism and mutant isocitrate dehydrogenase glioma
por: Li, Xianqi, et al.
Publicado: (2022) -
Combined molecular subtyping, grading, and segmentation of glioma using multi-task deep learning
por: van der Voort, Sebastian R, et al.
Publicado: (2022) -
Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement
por: Chang, Ken, et al.
Publicado: (2019)