Cargando…
A machine learning model for classifying G-protein-coupled receptors as agonists or antagonists
BACKGROUND: G-protein coupled receptors (GPCRs) sense and transmit extracellular signals into the intracellular machinery by regulating G proteins. GPCR malfunctions are associated with a variety of signaling-related diseases, including cancer and diabetes; at least a third of the marketed drugs tar...
Autores principales: | Oh, Jooseong, Ceong, Hyi-thaek, Na, Dokyun, Park, Chungoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9389651/ https://www.ncbi.nlm.nih.gov/pubmed/35982407 http://dx.doi.org/10.1186/s12859-022-04877-7 |
Ejemplares similares
-
PIC-Me: paralogs and isoforms classifier based on machine-learning approaches
por: Oh, Jooseong, et al.
Publicado: (2021) -
In silico prediction of potential chemical reactions mediated by human enzymes
por: Yu, Myeong-Sang, et al.
Publicado: (2018) -
Agonist and antagonist TRUPATH assays for G protein-coupled receptors
por: DiBerto, Jeffrey F., et al.
Publicado: (2022) -
Comparability of reference-based and reference-free transcriptome analysis approaches at the gene expression level
por: Lee, Sung-Gwon, et al.
Publicado: (2021) -
Function-based high-throughput screening for antibody antagonists and agonists against G protein-coupled receptors
por: Ren, Huanhuan, et al.
Publicado: (2020)