Cargando…

3D variable flip angle T1 mapping for differentiating benign and malignant liver lesions at 3T: comparison with diffusion weighted imaging

BACKGROUND: Different methods have been used to improve the imaging diagnosis of focal liver lesions (FLL). Among them, magnetic resonance imaging (MRI) has received more attention since it provides significant amount of information without radiation exposure. However, atypical imaging characteristi...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Fei, Yang, Qing, Zhang, Yupei, Liu, Jun, Liu, Mengxiao, Zhu, Juan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9389795/
https://www.ncbi.nlm.nih.gov/pubmed/35982406
http://dx.doi.org/10.1186/s12880-022-00873-8
Descripción
Sumario:BACKGROUND: Different methods have been used to improve the imaging diagnosis of focal liver lesions (FLL). Among them, magnetic resonance imaging (MRI) has received more attention since it provides significant amount of information without radiation exposure. However, atypical imaging characteristics of FLL on MRI may complicate the differential diagnosis between benign and malignant FLL. This study aimed to compare the diagnostic value of T1 mapping and diffusion-weighted imaging (DWI) for differentiating of benign and malignant FLLs. METHODS: This retrospective study enrolled 294 FLLs, including 150 benign and 144 malignant lesions. Whole liver T1 mapping sequences were obtained before and 2 min after the administration of Gd-DTPA to acquire native T1 and enhanced T1 and ΔT1%. Additionally, DWI sequence was conducted to generate apparent diffusion coefficient (ADC) maps. These quantitative parameters were compared using one-way analysis of variance, and the diagnostic accuracy of T1 mapping and ADC for FLLs was calculated by area under the curve (AUC). RESULTS: Significant differences were observed regarding the native T1, enhanced T1, ΔT1%, and ADC between benign and malignant FLLs. Furthermore, the sensitivity and specificity of the parameters are as follows: native T1 0.797/0.702 (cut off value 1635.5 ms); enhanced T1, 0.911/0.976 (cutoff value 339.2 ms); ΔT1%, 0.901/0.905 (cutoff value 70.8%); and ADC, 0.975/0.952 (cutoff value 1.21 × 10(−3) mm(2)/s). The ideal cutoff values for native T1 and ADC in identifying cyst and haemangioma were 2422.9 ms (AUC 0.990, P < 0.01) and 2.077 × 10(–3) mm(2)/s (AUC 0.949, P < 0.01), respectively, with a sensitivity and specificity of 0.963/1 and 0.852/0.892, respectively. ADC was significantly positively correlated with T1 and ΔT1%, and significantly negatively correlated with enhanced T1. CONCLUSION: The 3D Variable flip angle T1 mapping technique with Gd-DTPA has a high clinical potential for identifying benign and malignant FLLs. The enhanced T1 and ΔT1% values have similar diagnostic accuracy compared with DWI in evaluating FLLs. Native T1 shows better performance than DWI in distinguishing benign liver lesions, specifically, cysts, and haemangioma.