Cargando…
Advanced deep learning approaches to predict supply chain risks under COVID-19 restrictions
The ongoing COVID-19 pandemic has created an unprecedented predicament for global supply chains (SCs). Shipments of essential and life-saving products, ranging from pharmaceuticals, agriculture, and healthcare, to manufacturing, have been significantly impacted or delayed, making the global SCs vuln...
Autores principales: | Bassiouni, Mahmoud M., Chakrabortty, Ripon K., Hussain, Omar K., Rahman, Humyun Fuad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9389854/ https://www.ncbi.nlm.nih.gov/pubmed/35999828 http://dx.doi.org/10.1016/j.eswa.2022.118604 |
Ejemplares similares
-
Intelligent model for contemporary supply chain barriers in manufacturing sectors under the impact of the COVID-19 pandemic
por: Gamal, Abduallah, et al.
Publicado: (2022) -
Towards facing uncertainties in biofuel supply chain networks: a systematic literature review
por: Habibi, Farhad, et al.
Publicado: (2023) -
A mathematical model for managing the multi-dimensional impacts of the COVID-19 pandemic in supply chain of a high-demand item
por: Paul, Sanjoy Kumar, et al.
Publicado: (2022) -
RESCOVIDTCNnet: A residual neural network-based framework for COVID-19 detection using TCN and EWT with chest X-ray images
por: El-Dahshan, El-Sayed. A, et al.
Publicado: (2022) -
FSS-2019-nCov: A deep learning architecture for semi-supervised few-shot segmentation of COVID-19 infection
por: Abdel-Basset, Mohamed, et al.
Publicado: (2021)