Cargando…
Automated Detection, Segmentation, and Classification of Pleural Effusion From Computed Tomography Scans Using Machine Learning
This study trained and evaluated algorithms to detect, segment, and classify simple and complex pleural effusions on computed tomography (CT) scans. MATERIALS AND METHODS: For detection and segmentation, we randomly selected 160 chest CT scans out of all consecutive patients (January 2016–January 20...
Autores principales: | Sexauer, Raphael, Yang, Shan, Weikert, Thomas, Poletti, Julien, Bremerich, Jens, Roth, Jan Adam, Sauter, Alexander Walter, Anastasopoulos, Constantin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9390225/ https://www.ncbi.nlm.nih.gov/pubmed/35797580 http://dx.doi.org/10.1097/RLI.0000000000000869 |
Ejemplares similares
-
Automated Detection, Segmentation, and Classification of Pericardial Effusions on Chest CT Using a Deep Convolutional Neural Network
por: Wilder-Smith, Adrian Jonathan, et al.
Publicado: (2022) -
Automated CT Lung Density Analysis of Viral Pneumonia and Healthy Lungs Using Deep Learning-Based Segmentation, Histograms and HU Thresholds
por: Romanov, Andrej, et al.
Publicado: (2021) -
Towards More Structure: Comparing TNM Staging Completeness and Processing Time of Text-Based Reports versus Fully Segmented and Annotated PET/CT Data of Non-Small-Cell Lung Cancer
por: Sexauer, Raphael, et al.
Publicado: (2018) -
Development and clinical implementation of tailored image analysis tools for COVID-19 in the midst of the pandemic: The synergetic effect of an open, clinically embedded software development platform and machine learning
por: Anastasopoulos, Constantin, et al.
Publicado: (2020) -
Diagnostic Accuracy of Imaging Findings in Pleural Empyema: Systematic Review and Meta-Analysis
por: Zettinig, Desiree, et al.
Publicado: (2021)