Cargando…

Right lung transplantation with a left-to-right inverted anastomosis in a rat model

OBJECTIVE: Right lung transplantation in rats has been attempted occasionally, but the technical complexity makes it challenging to apply routinely. Additionally, basic research on inverted lobar lung transplantation is scarce because of the lack of a cost-effective experimental model. We first repo...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Heng, Yan, Hao-Ji, Zheng, Xiang-Yun, Wang, Jun-Jie, Tang, Hong-Tao, Li, Cai-Han, Tian, Dong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9390618/
https://www.ncbi.nlm.nih.gov/pubmed/36004231
http://dx.doi.org/10.1016/j.xjon.2022.01.020
Descripción
Sumario:OBJECTIVE: Right lung transplantation in rats has been attempted occasionally, but the technical complexity makes it challenging to apply routinely. Additionally, basic research on inverted lobar lung transplantation is scarce because of the lack of a cost-effective experimental model. We first reported right lung transplantation in a rat model using left-to-right inverted anastomosis to imitate the principle of clinically inverted lung transplantation. METHODS: Right lung transplantation was performed in 10 consecutive rats. By using a 3-cuff technique, the left lung of the donor rat was implanted into the right thoracic cavity of the recipient rat. The rat lung graft was rotated 180° along the vertical axis to achieve anatomic matching of right hilar structures. Another 10 consecutive rats had received orthotopic left lung transplantation as a control. RESULTS: All lung transplantation procedures were technically successful without intraoperative failure. One rat (10%) died of full pulmonary atelectasis after right lung transplantation, whereas all rats survived after left lung transplantation. No significant difference was observed in heart-lung block retrieval (8.6 ± 0.8 vs 8.4 ± 0.9 minutes), cuff preparation (8.3 ± 0.9 vs 8.7 ± 0.9 minutes), or total procedure time (58.2 ± 2.6 vs 56.6 ± 2.1 minutes) between the right lung transplantation and standard left lung transplantation groups (P > .05), although the cold ischemia time (14.2 ± 0.9 vs 25.5 ± 1.7 minutes) and warm ischemia time (19.8 ± 1.5 vs 13.7 ± 1.8 minutes) were different (P < .001). CONCLUSIONS: Right lung transplantation with a left-to-right inverted anastomosis in a rat model is technically easy to master, expeditious, and reproducible. It can potentially imitate the principle of clinically inverted lung transplantation and become an alternative to standard left lung transplantation.