Cargando…
Use of Magnetic Modulation of Nitrogen-Vacancy Center Fluorescence in Nanodiamonds for Quantitative Analysis of Nanoparticles in Organisms
[Image: see text] The fluorescence intensity emitted by nitrogen-vacancy (NV) centers in diamond nanoparticles can be readily modulated by the application of a magnetic field using a small electromagnet. By acquiring interleaved images acquired in the presence and absence of the magnetic field and p...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9390786/ https://www.ncbi.nlm.nih.gov/pubmed/35996538 http://dx.doi.org/10.1021/acsmeasuresciau.2c00006 |
Sumario: | [Image: see text] The fluorescence intensity emitted by nitrogen-vacancy (NV) centers in diamond nanoparticles can be readily modulated by the application of a magnetic field using a small electromagnet. By acquiring interleaved images acquired in the presence and absence of the magnetic field and performing digital subtraction, the fluorescence intensity of the NV nanodiamond can be isolated from scattering and autofluorescence even when these backgrounds are changing monotonically during the experiments. This approach has the potential to enable the robust identification of nanodiamonds in organisms and other complex environments. Yet, the practical application of magnetic modulation imaging to realistic systems requires the use of quantitative analysis methods based on signal-to-noise considerations. Here, we describe the use of magnetic modulation to analyze the uptake of diamond nanoparticles from an aqueous environment into Caenorhabditis elegans, used here as a model system for identification and quantification of nanodiamonds in complex matrices. Based on the observed signal-to-noise ratio of sets of digitally subtracted images, we show that nanodiamonds can be identified on an individual pixel basis with a >99.95% confidence. To determine whether surface functionalization of the nanodiamond significantly impacted uptake, we used this approach to analyze the presence of nanodiamonds in C. elegans that had been exposed to these functionalized nanodiamonds in the water column, with uptake likely occurring by ingestion. In each case, the images show a significant nanoparticle uptake. However, differences in uptake between the three ligands were not outside of the experimental error, indicating that additional factors beyond the surface charge are important factors controlling uptake. Analysis of the number of pixels above the threshold in individual C. elegans organisms revealed distributions that deviate significantly from a Poisson distribution, suggesting that uptake of nanoparticles may not be a statistically independent event. The results presented here demonstrate that magnetic modulation combined with quantitative analysis of the resulting images can be used to robustly characterize nanoparticle uptake into organisms. |
---|