Cargando…
Machine Learning Improves Functional Upper Extremity Use Capture in Distal Radius Fracture Patients
Current outcome measures, including strength/range of motion testing, patient-reported outcomes (PROs), and motor skill testing, may provide inadequate granularity in reflecting functional upper extremity (UE) use after distal radius fracture (DRF) repair. Accelerometry analysis also has shortcoming...
Autores principales: | Sequeira, Sean B., Grainger, Megan L., Mitchell, Abigail M., Anderson, Cassidy C., Geed, Shashwati, Lum, Peter, Giladi, Aviram M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9390808/ https://www.ncbi.nlm.nih.gov/pubmed/35999884 http://dx.doi.org/10.1097/GOX.0000000000004472 |
Ejemplares similares
-
Characterizing upper extremity motor behavior in the first week after stroke
por: Barth, Jessica, et al.
Publicado: (2020) -
Concurrent validity of machine learning-classified functional upper extremity use from accelerometry in chronic stroke
por: Geed, Shashwati, et al.
Publicado: (2023) -
The Critical Period After Stroke Study (CPASS) Upper Extremity Treatment Protocol
por: Barth, Jessica, et al.
Publicado: (2023) -
119. Ultrasound Evaluation for Findings of Acute Carpal Tunnel Syndrome after Distal Radius Fracture
por: Ngaage, Ledibabari M., et al.
Publicado: (2023) -
Development of Osteopenia During Distal Radius Fracture Recovery
por: Yousaf, Imran S., et al.
Publicado: (2022)