Cargando…
The impact of sparsity in low-rank recurrent neural networks
Neural population dynamics are often highly coordinated, allowing task-related computations to be understood as neural trajectories through low-dimensional subspaces. How the network connectivity and input structure give rise to such activity can be investigated with the aid of low-rank recurrent ne...
Autores principales: | Herbert, Elizabeth, Ostojic, Srdjan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9390915/ https://www.ncbi.nlm.nih.gov/pubmed/35944030 http://dx.doi.org/10.1371/journal.pcbi.1010426 |
Ejemplares similares
-
Geometry of population activity in spiking networks with low-rank structure
por: Cimeša, Ljubica, et al.
Publicado: (2023) -
Low rank and sparsity constrained method for identifying overlapping functional brain networks
por: Aggarwal, Priya, et al.
Publicado: (2018) -
Sparsity and locally low rank regularization for MR fingerprinting
por: Lima da Cruz, Gastão, et al.
Publicado: (2019) -
Coding with transient trajectories in recurrent neural networks
por: Bondanelli, Giulio, et al.
Publicado: (2020) -
Multicomponent MR fingerprinting reconstruction using joint‐sparsity and low‐rank constraints
por: Nagtegaal, Martijn, et al.
Publicado: (2022)