Cargando…
Group linear non-Gaussian component analysis with applications to neuroimaging
Independent component analysis (ICA) is an unsupervised learning method popular in functional magnetic resonance imaging (fMRI). Group ICA has been used to search for biomarkers in neurological disorders including autism spectrum disorder and dementia. However, current methods use a principal compon...
Autores principales: | Zhao, Yuxuan, Matteson, David S., Mostofsky, Stewart H., Nebel, Mary Beth, Risk, Benjamin B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9390952/ https://www.ncbi.nlm.nih.gov/pubmed/35992040 http://dx.doi.org/10.1016/j.csda.2022.107454 |
Ejemplares similares
-
Accounting for motion in resting-state fMRI: What part of the spectrum are we characterizing in autism spectrum disorder?
por: Nebel, Mary Beth, et al.
Publicado: (2022) -
Parallel group independent component analysis for massive fMRI data sets
por: Chen, Shaojie, et al.
Publicado: (2017) -
ADHD-related sex differences in fronto-subcortical intrinsic functional connectivity and associations with delay discounting
por: Rosch, Keri S., et al.
Publicado: (2018) -
Beyond Massive Univariate Tests: Covariance Regression Reveals Complex Patterns of Functional Connectivity Related to Attention-Deficit/Hyperactivity Disorder, Age, Sex, and Response Control
por: Zhao, Yi, et al.
Publicado: (2021) -
Gaussian and non-Gaussian linear time series and random fields
por: Rosenblatt, Murray
Publicado: (2000)