Cargando…
A Small Sample Recognition Model for Poisonous and Edible Mushrooms based on Graph Convolutional Neural Network
The automatic identification of disease types of edible mushroom crops and poisonous crops is of great significance for improving crop yield and quality. Based on the graph convolutional neural network theory, this paper constructs a graph convolutional network model for the identification of poison...
Autores principales: | Zhu, Li, Pan, Xin, Wang, Xinpeng, Haito, Fu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9391115/ https://www.ncbi.nlm.nih.gov/pubmed/35990124 http://dx.doi.org/10.1155/2022/2276318 |
Ejemplares similares
-
Edible and poisonous mushrooms of the world
Publicado: (2003) -
Toxicological Profiles of Poisonous, Edible, and Medicinal Mushrooms
por: Jo, Woo-Sik, et al.
Publicado: (2014) -
Gaze Gesture Recognition by Graph Convolutional Networks
por: Shi, Lei, et al.
Publicado: (2021) -
Simplified, interpretable graph convolutional neural networks for small molecule activity prediction
por: Weber, Jeffrey K., et al.
Publicado: (2021) -
A deep graph convolutional neural network architecture for graph classification
por: Zhou, Yuchen, et al.
Publicado: (2023)