Cargando…

Characterization and Proteomic Analyses of Proinflammatory Cytokines in a Mouse Model of Liver Transplant Rejection

Liver transplantation (LT) is an effective strategy for the treatment of end-stage liver disease, but immune rejection remains a significant detriment to the survival and prognosis of these LT patients. While immune rejection is closely related to cytokines, the cytokines investigated within previou...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Shi-Peng, Li, Xin-Qiang, Chen, Xiao-Jie, Zhang, Jin-Ming, Zhou, Guang-Peng, Zhou, Liu-Xin, Zhang, Hai-Ming, Sun, Li-Ying, Zhu, Zhi-Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9391131/
https://www.ncbi.nlm.nih.gov/pubmed/35993024
http://dx.doi.org/10.1155/2022/5188584
_version_ 1784770803819085824
author Li, Shi-Peng
Li, Xin-Qiang
Chen, Xiao-Jie
Zhang, Jin-Ming
Zhou, Guang-Peng
Zhou, Liu-Xin
Zhang, Hai-Ming
Sun, Li-Ying
Zhu, Zhi-Jun
author_facet Li, Shi-Peng
Li, Xin-Qiang
Chen, Xiao-Jie
Zhang, Jin-Ming
Zhou, Guang-Peng
Zhou, Liu-Xin
Zhang, Hai-Ming
Sun, Li-Ying
Zhu, Zhi-Jun
author_sort Li, Shi-Peng
collection PubMed
description Liver transplantation (LT) is an effective strategy for the treatment of end-stage liver disease, but immune rejection remains a significant detriment to the survival and prognosis of these LT patients. While immune rejection is closely related to cytokines, the cytokines investigated within previous studies have been limited and have not included a systematic analysis of proinflammatory cytokines. In the present study, we used a protein chip system and proteomics to detect and analyze serum proinflammatory cytokines and differentially expressed proteins in liver tissue in a mouse model of liver transplantation. In addition, bioinformatics analysis was employed to analyze the proinflammatory cytokines and differential changes in proteins in response to this procedure. With these analyses, we found that serum contents of GC-CSF, CXCL-1, MCP-5, and CXCL-2 were significantly increased after liver transplantation, while IL-5, IL-10, and IL-17 were significantly decreased. Results from Gene Ontology (GO) and KEGG pathway analyses revealed that the cytokine-cytokine receptor, Th1/Th2 cell differentiation, and JAK-STAT signaling pathway were enriched in a network associated with the activation of immune response. Results from our proteomic analysis of liver tissue samples revealed that 470 proteins are increased and 50 decreased, including Anxa1, Anxa2, Acsl4, Sirpa, S100a8, and S100a9. KEGG pathway analysis indicated that the neutrophil extracellular trap formation, NOD-like receptor signaling pathway, and leukocyte transendothelial migration were all associated with liver transplant rejection in these mice. Bioinformatics analysis results demonstrated that CXCL-1/CXCL-2 and S100a8/S100a9 were the genes most closely related to the functions of neutrophils and the mononuclear phagocyte system. These findings provide new insights into some of the critical factors associated with liver transplant rejection and thus offer new targets for the treatment and prevention of this condition.
format Online
Article
Text
id pubmed-9391131
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-93911312022-08-20 Characterization and Proteomic Analyses of Proinflammatory Cytokines in a Mouse Model of Liver Transplant Rejection Li, Shi-Peng Li, Xin-Qiang Chen, Xiao-Jie Zhang, Jin-Ming Zhou, Guang-Peng Zhou, Liu-Xin Zhang, Hai-Ming Sun, Li-Ying Zhu, Zhi-Jun Oxid Med Cell Longev Research Article Liver transplantation (LT) is an effective strategy for the treatment of end-stage liver disease, but immune rejection remains a significant detriment to the survival and prognosis of these LT patients. While immune rejection is closely related to cytokines, the cytokines investigated within previous studies have been limited and have not included a systematic analysis of proinflammatory cytokines. In the present study, we used a protein chip system and proteomics to detect and analyze serum proinflammatory cytokines and differentially expressed proteins in liver tissue in a mouse model of liver transplantation. In addition, bioinformatics analysis was employed to analyze the proinflammatory cytokines and differential changes in proteins in response to this procedure. With these analyses, we found that serum contents of GC-CSF, CXCL-1, MCP-5, and CXCL-2 were significantly increased after liver transplantation, while IL-5, IL-10, and IL-17 were significantly decreased. Results from Gene Ontology (GO) and KEGG pathway analyses revealed that the cytokine-cytokine receptor, Th1/Th2 cell differentiation, and JAK-STAT signaling pathway were enriched in a network associated with the activation of immune response. Results from our proteomic analysis of liver tissue samples revealed that 470 proteins are increased and 50 decreased, including Anxa1, Anxa2, Acsl4, Sirpa, S100a8, and S100a9. KEGG pathway analysis indicated that the neutrophil extracellular trap formation, NOD-like receptor signaling pathway, and leukocyte transendothelial migration were all associated with liver transplant rejection in these mice. Bioinformatics analysis results demonstrated that CXCL-1/CXCL-2 and S100a8/S100a9 were the genes most closely related to the functions of neutrophils and the mononuclear phagocyte system. These findings provide new insights into some of the critical factors associated with liver transplant rejection and thus offer new targets for the treatment and prevention of this condition. Hindawi 2022-08-12 /pmc/articles/PMC9391131/ /pubmed/35993024 http://dx.doi.org/10.1155/2022/5188584 Text en Copyright © 2022 Shi-Peng Li et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Li, Shi-Peng
Li, Xin-Qiang
Chen, Xiao-Jie
Zhang, Jin-Ming
Zhou, Guang-Peng
Zhou, Liu-Xin
Zhang, Hai-Ming
Sun, Li-Ying
Zhu, Zhi-Jun
Characterization and Proteomic Analyses of Proinflammatory Cytokines in a Mouse Model of Liver Transplant Rejection
title Characterization and Proteomic Analyses of Proinflammatory Cytokines in a Mouse Model of Liver Transplant Rejection
title_full Characterization and Proteomic Analyses of Proinflammatory Cytokines in a Mouse Model of Liver Transplant Rejection
title_fullStr Characterization and Proteomic Analyses of Proinflammatory Cytokines in a Mouse Model of Liver Transplant Rejection
title_full_unstemmed Characterization and Proteomic Analyses of Proinflammatory Cytokines in a Mouse Model of Liver Transplant Rejection
title_short Characterization and Proteomic Analyses of Proinflammatory Cytokines in a Mouse Model of Liver Transplant Rejection
title_sort characterization and proteomic analyses of proinflammatory cytokines in a mouse model of liver transplant rejection
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9391131/
https://www.ncbi.nlm.nih.gov/pubmed/35993024
http://dx.doi.org/10.1155/2022/5188584
work_keys_str_mv AT lishipeng characterizationandproteomicanalysesofproinflammatorycytokinesinamousemodeloflivertransplantrejection
AT lixinqiang characterizationandproteomicanalysesofproinflammatorycytokinesinamousemodeloflivertransplantrejection
AT chenxiaojie characterizationandproteomicanalysesofproinflammatorycytokinesinamousemodeloflivertransplantrejection
AT zhangjinming characterizationandproteomicanalysesofproinflammatorycytokinesinamousemodeloflivertransplantrejection
AT zhouguangpeng characterizationandproteomicanalysesofproinflammatorycytokinesinamousemodeloflivertransplantrejection
AT zhouliuxin characterizationandproteomicanalysesofproinflammatorycytokinesinamousemodeloflivertransplantrejection
AT zhanghaiming characterizationandproteomicanalysesofproinflammatorycytokinesinamousemodeloflivertransplantrejection
AT sunliying characterizationandproteomicanalysesofproinflammatorycytokinesinamousemodeloflivertransplantrejection
AT zhuzhijun characterizationandproteomicanalysesofproinflammatorycytokinesinamousemodeloflivertransplantrejection