Cargando…
HADCNet: Automatic segmentation of COVID-19 infection based on a hybrid attention dense connected network with dilated convolution
the automatic segmentation of lung infections in CT slices provides a rapid and effective strategy for diagnosing, treating, and assessing COVID-19 cases. However, the segmentation of the infected areas presents several difficulties, including high intraclass variability and interclass similarity am...
Autores principales: | Chen, Ying, Zhou, Taohui, Chen, Yi, Feng, Longfeng, Zheng, Cheng, Liu, Lan, Hu, Liping, Pan, Bujian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9391231/ https://www.ncbi.nlm.nih.gov/pubmed/36029749 http://dx.doi.org/10.1016/j.compbiomed.2022.105981 |
Ejemplares similares
-
Attention-Guided Network with Densely Connected Convolution for Skin Lesion Segmentation
por: Tao, Shengxin, et al.
Publicado: (2021) -
D2A U-Net: Automatic segmentation of COVID-19 CT slices based on dual attention and hybrid dilated convolution
por: Zhao, Xiangyu, et al.
Publicado: (2021) -
A-DenseUNet: Adaptive Densely Connected UNet for Polyp Segmentation in Colonoscopy Images with Atrous Convolution
por: Safarov, Sirojbek, et al.
Publicado: (2021) -
Segmentation Algorithm of Magnetic Resonance Imaging Glioma under Fully Convolutional Densely Connected Convolutional Networks
por: Dong, Jie, et al.
Publicado: (2022) -
DCAU-Net: dense convolutional attention U-Net for segmentation of intracranial aneurysm images
por: Yuan, Wenwen, et al.
Publicado: (2022)