Cargando…
A user-friendly tool for cloud-based whole slide image segmentation with examples from renal histopathology
BACKGROUND: Image-based machine learning tools hold great promise for clinical applications in pathology research. However, the ideal end-users of these computational tools (e.g., pathologists and biological scientists) often lack the programming experience required for the setup and use of these to...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9391340/ https://www.ncbi.nlm.nih.gov/pubmed/35996627 http://dx.doi.org/10.1038/s43856-022-00138-z |
_version_ | 1784770838244884480 |
---|---|
author | Lutnick, Brendon Manthey, David Becker, Jan U. Ginley, Brandon Moos, Katharina Zuckerman, Jonathan E. Rodrigues, Luis Gallan, Alexander J. Barisoni, Laura Alpers, Charles E. Wang, Xiaoxin X. Myakala, Komuraiah Jones, Bryce A. Levi, Moshe Kopp, Jeffrey B. Yoshida, Teruhiko Zee, Jarcy Han, Seung Seok Jain, Sanjay Rosenberg, Avi Z. Jen, Kuang Yu. Sarder, Pinaki |
author_facet | Lutnick, Brendon Manthey, David Becker, Jan U. Ginley, Brandon Moos, Katharina Zuckerman, Jonathan E. Rodrigues, Luis Gallan, Alexander J. Barisoni, Laura Alpers, Charles E. Wang, Xiaoxin X. Myakala, Komuraiah Jones, Bryce A. Levi, Moshe Kopp, Jeffrey B. Yoshida, Teruhiko Zee, Jarcy Han, Seung Seok Jain, Sanjay Rosenberg, Avi Z. Jen, Kuang Yu. Sarder, Pinaki |
author_sort | Lutnick, Brendon |
collection | PubMed |
description | BACKGROUND: Image-based machine learning tools hold great promise for clinical applications in pathology research. However, the ideal end-users of these computational tools (e.g., pathologists and biological scientists) often lack the programming experience required for the setup and use of these tools which often rely on the use of command line interfaces. METHODS: We have developed Histo-Cloud, a tool for segmentation of whole slide images (WSIs) that has an easy-to-use graphical user interface. This tool runs a state-of-the-art convolutional neural network (CNN) for segmentation of WSIs in the cloud and allows the extraction of features from segmented regions for further analysis. RESULTS: By segmenting glomeruli, interstitial fibrosis and tubular atrophy, and vascular structures from renal and non-renal WSIs, we demonstrate the scalability, best practices for transfer learning, and effects of dataset variability. Finally, we demonstrate an application for animal model research, analyzing glomerular features in three murine models. CONCLUSIONS: Histo-Cloud is open source, accessible over the internet, and adaptable for segmentation of any histological structure regardless of stain. |
format | Online Article Text |
id | pubmed-9391340 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-93913402022-08-21 A user-friendly tool for cloud-based whole slide image segmentation with examples from renal histopathology Lutnick, Brendon Manthey, David Becker, Jan U. Ginley, Brandon Moos, Katharina Zuckerman, Jonathan E. Rodrigues, Luis Gallan, Alexander J. Barisoni, Laura Alpers, Charles E. Wang, Xiaoxin X. Myakala, Komuraiah Jones, Bryce A. Levi, Moshe Kopp, Jeffrey B. Yoshida, Teruhiko Zee, Jarcy Han, Seung Seok Jain, Sanjay Rosenberg, Avi Z. Jen, Kuang Yu. Sarder, Pinaki Commun Med (Lond) Article BACKGROUND: Image-based machine learning tools hold great promise for clinical applications in pathology research. However, the ideal end-users of these computational tools (e.g., pathologists and biological scientists) often lack the programming experience required for the setup and use of these tools which often rely on the use of command line interfaces. METHODS: We have developed Histo-Cloud, a tool for segmentation of whole slide images (WSIs) that has an easy-to-use graphical user interface. This tool runs a state-of-the-art convolutional neural network (CNN) for segmentation of WSIs in the cloud and allows the extraction of features from segmented regions for further analysis. RESULTS: By segmenting glomeruli, interstitial fibrosis and tubular atrophy, and vascular structures from renal and non-renal WSIs, we demonstrate the scalability, best practices for transfer learning, and effects of dataset variability. Finally, we demonstrate an application for animal model research, analyzing glomerular features in three murine models. CONCLUSIONS: Histo-Cloud is open source, accessible over the internet, and adaptable for segmentation of any histological structure regardless of stain. Nature Publishing Group UK 2022-08-19 /pmc/articles/PMC9391340/ /pubmed/35996627 http://dx.doi.org/10.1038/s43856-022-00138-z Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Lutnick, Brendon Manthey, David Becker, Jan U. Ginley, Brandon Moos, Katharina Zuckerman, Jonathan E. Rodrigues, Luis Gallan, Alexander J. Barisoni, Laura Alpers, Charles E. Wang, Xiaoxin X. Myakala, Komuraiah Jones, Bryce A. Levi, Moshe Kopp, Jeffrey B. Yoshida, Teruhiko Zee, Jarcy Han, Seung Seok Jain, Sanjay Rosenberg, Avi Z. Jen, Kuang Yu. Sarder, Pinaki A user-friendly tool for cloud-based whole slide image segmentation with examples from renal histopathology |
title | A user-friendly tool for cloud-based whole slide image segmentation with examples from renal histopathology |
title_full | A user-friendly tool for cloud-based whole slide image segmentation with examples from renal histopathology |
title_fullStr | A user-friendly tool for cloud-based whole slide image segmentation with examples from renal histopathology |
title_full_unstemmed | A user-friendly tool for cloud-based whole slide image segmentation with examples from renal histopathology |
title_short | A user-friendly tool for cloud-based whole slide image segmentation with examples from renal histopathology |
title_sort | user-friendly tool for cloud-based whole slide image segmentation with examples from renal histopathology |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9391340/ https://www.ncbi.nlm.nih.gov/pubmed/35996627 http://dx.doi.org/10.1038/s43856-022-00138-z |
work_keys_str_mv | AT lutnickbrendon auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT mantheydavid auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT beckerjanu auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT ginleybrandon auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT mooskatharina auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT zuckermanjonathane auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT rodriguesluis auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT gallanalexanderj auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT barisonilaura auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT alperscharlese auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT wangxiaoxinx auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT myakalakomuraiah auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT jonesbrycea auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT levimoshe auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT koppjeffreyb auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT yoshidateruhiko auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT zeejarcy auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT hanseungseok auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT jainsanjay auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT rosenbergaviz auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT jenkuangyu auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT sarderpinaki auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT lutnickbrendon userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT mantheydavid userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT beckerjanu userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT ginleybrandon userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT mooskatharina userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT zuckermanjonathane userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT rodriguesluis userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT gallanalexanderj userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT barisonilaura userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT alperscharlese userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT wangxiaoxinx userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT myakalakomuraiah userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT jonesbrycea userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT levimoshe userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT koppjeffreyb userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT yoshidateruhiko userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT zeejarcy userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT hanseungseok userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT jainsanjay userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT rosenbergaviz userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT jenkuangyu userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT sarderpinaki userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology AT userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology |