Cargando…

A user-friendly tool for cloud-based whole slide image segmentation with examples from renal histopathology

BACKGROUND: Image-based machine learning tools hold great promise for clinical applications in pathology research. However, the ideal end-users of these computational tools (e.g., pathologists and biological scientists) often lack the programming experience required for the setup and use of these to...

Descripción completa

Detalles Bibliográficos
Autores principales: Lutnick, Brendon, Manthey, David, Becker, Jan U., Ginley, Brandon, Moos, Katharina, Zuckerman, Jonathan E., Rodrigues, Luis, Gallan, Alexander J., Barisoni, Laura, Alpers, Charles E., Wang, Xiaoxin X., Myakala, Komuraiah, Jones, Bryce A., Levi, Moshe, Kopp, Jeffrey B., Yoshida, Teruhiko, Zee, Jarcy, Han, Seung Seok, Jain, Sanjay, Rosenberg, Avi Z., Jen, Kuang Yu., Sarder, Pinaki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9391340/
https://www.ncbi.nlm.nih.gov/pubmed/35996627
http://dx.doi.org/10.1038/s43856-022-00138-z
_version_ 1784770838244884480
author Lutnick, Brendon
Manthey, David
Becker, Jan U.
Ginley, Brandon
Moos, Katharina
Zuckerman, Jonathan E.
Rodrigues, Luis
Gallan, Alexander J.
Barisoni, Laura
Alpers, Charles E.
Wang, Xiaoxin X.
Myakala, Komuraiah
Jones, Bryce A.
Levi, Moshe
Kopp, Jeffrey B.
Yoshida, Teruhiko
Zee, Jarcy
Han, Seung Seok
Jain, Sanjay
Rosenberg, Avi Z.
Jen, Kuang Yu.
Sarder, Pinaki
author_facet Lutnick, Brendon
Manthey, David
Becker, Jan U.
Ginley, Brandon
Moos, Katharina
Zuckerman, Jonathan E.
Rodrigues, Luis
Gallan, Alexander J.
Barisoni, Laura
Alpers, Charles E.
Wang, Xiaoxin X.
Myakala, Komuraiah
Jones, Bryce A.
Levi, Moshe
Kopp, Jeffrey B.
Yoshida, Teruhiko
Zee, Jarcy
Han, Seung Seok
Jain, Sanjay
Rosenberg, Avi Z.
Jen, Kuang Yu.
Sarder, Pinaki
author_sort Lutnick, Brendon
collection PubMed
description BACKGROUND: Image-based machine learning tools hold great promise for clinical applications in pathology research. However, the ideal end-users of these computational tools (e.g., pathologists and biological scientists) often lack the programming experience required for the setup and use of these tools which often rely on the use of command line interfaces. METHODS: We have developed Histo-Cloud, a tool for segmentation of whole slide images (WSIs) that has an easy-to-use graphical user interface. This tool runs a state-of-the-art convolutional neural network (CNN) for segmentation of WSIs in the cloud and allows the extraction of features from segmented regions for further analysis. RESULTS: By segmenting glomeruli, interstitial fibrosis and tubular atrophy, and vascular structures from renal and non-renal WSIs, we demonstrate the scalability, best practices for transfer learning, and effects of dataset variability. Finally, we demonstrate an application for animal model research, analyzing glomerular features in three murine models. CONCLUSIONS: Histo-Cloud is open source, accessible over the internet, and adaptable for segmentation of any histological structure regardless of stain.
format Online
Article
Text
id pubmed-9391340
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-93913402022-08-21 A user-friendly tool for cloud-based whole slide image segmentation with examples from renal histopathology Lutnick, Brendon Manthey, David Becker, Jan U. Ginley, Brandon Moos, Katharina Zuckerman, Jonathan E. Rodrigues, Luis Gallan, Alexander J. Barisoni, Laura Alpers, Charles E. Wang, Xiaoxin X. Myakala, Komuraiah Jones, Bryce A. Levi, Moshe Kopp, Jeffrey B. Yoshida, Teruhiko Zee, Jarcy Han, Seung Seok Jain, Sanjay Rosenberg, Avi Z. Jen, Kuang Yu. Sarder, Pinaki Commun Med (Lond) Article BACKGROUND: Image-based machine learning tools hold great promise for clinical applications in pathology research. However, the ideal end-users of these computational tools (e.g., pathologists and biological scientists) often lack the programming experience required for the setup and use of these tools which often rely on the use of command line interfaces. METHODS: We have developed Histo-Cloud, a tool for segmentation of whole slide images (WSIs) that has an easy-to-use graphical user interface. This tool runs a state-of-the-art convolutional neural network (CNN) for segmentation of WSIs in the cloud and allows the extraction of features from segmented regions for further analysis. RESULTS: By segmenting glomeruli, interstitial fibrosis and tubular atrophy, and vascular structures from renal and non-renal WSIs, we demonstrate the scalability, best practices for transfer learning, and effects of dataset variability. Finally, we demonstrate an application for animal model research, analyzing glomerular features in three murine models. CONCLUSIONS: Histo-Cloud is open source, accessible over the internet, and adaptable for segmentation of any histological structure regardless of stain. Nature Publishing Group UK 2022-08-19 /pmc/articles/PMC9391340/ /pubmed/35996627 http://dx.doi.org/10.1038/s43856-022-00138-z Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Lutnick, Brendon
Manthey, David
Becker, Jan U.
Ginley, Brandon
Moos, Katharina
Zuckerman, Jonathan E.
Rodrigues, Luis
Gallan, Alexander J.
Barisoni, Laura
Alpers, Charles E.
Wang, Xiaoxin X.
Myakala, Komuraiah
Jones, Bryce A.
Levi, Moshe
Kopp, Jeffrey B.
Yoshida, Teruhiko
Zee, Jarcy
Han, Seung Seok
Jain, Sanjay
Rosenberg, Avi Z.
Jen, Kuang Yu.
Sarder, Pinaki
A user-friendly tool for cloud-based whole slide image segmentation with examples from renal histopathology
title A user-friendly tool for cloud-based whole slide image segmentation with examples from renal histopathology
title_full A user-friendly tool for cloud-based whole slide image segmentation with examples from renal histopathology
title_fullStr A user-friendly tool for cloud-based whole slide image segmentation with examples from renal histopathology
title_full_unstemmed A user-friendly tool for cloud-based whole slide image segmentation with examples from renal histopathology
title_short A user-friendly tool for cloud-based whole slide image segmentation with examples from renal histopathology
title_sort user-friendly tool for cloud-based whole slide image segmentation with examples from renal histopathology
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9391340/
https://www.ncbi.nlm.nih.gov/pubmed/35996627
http://dx.doi.org/10.1038/s43856-022-00138-z
work_keys_str_mv AT lutnickbrendon auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT mantheydavid auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT beckerjanu auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT ginleybrandon auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT mooskatharina auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT zuckermanjonathane auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT rodriguesluis auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT gallanalexanderj auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT barisonilaura auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT alperscharlese auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT wangxiaoxinx auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT myakalakomuraiah auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT jonesbrycea auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT levimoshe auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT koppjeffreyb auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT yoshidateruhiko auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT zeejarcy auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT hanseungseok auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT jainsanjay auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT rosenbergaviz auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT jenkuangyu auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT sarderpinaki auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT auserfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT lutnickbrendon userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT mantheydavid userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT beckerjanu userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT ginleybrandon userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT mooskatharina userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT zuckermanjonathane userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT rodriguesluis userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT gallanalexanderj userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT barisonilaura userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT alperscharlese userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT wangxiaoxinx userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT myakalakomuraiah userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT jonesbrycea userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT levimoshe userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT koppjeffreyb userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT yoshidateruhiko userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT zeejarcy userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT hanseungseok userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT jainsanjay userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT rosenbergaviz userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT jenkuangyu userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT sarderpinaki userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology
AT userfriendlytoolforcloudbasedwholeslideimagesegmentationwithexamplesfromrenalhistopathology