Cargando…
CNN-XGBoost fusion-based affective state recognition using EEG spectrogram image analysis
Recognizing emotional state of human using brain signal is an active research domain with several open challenges. In this research, we propose a signal spectrogram image based CNN-XGBoost fusion method for recognising three dimensions of emotion, namely arousal (calm or excitement), valence (positi...
Autores principales: | Khan, Md. Sakib, Salsabil, Nishat, Alam, Md. Golam Rabiul, Dewan, M. Ali Akber, Uddin, Md. Zia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9391364/ https://www.ncbi.nlm.nih.gov/pubmed/35986065 http://dx.doi.org/10.1038/s41598-022-18257-x |
Ejemplares similares
-
Appraisal of high-stake examinations during SARS-CoV-2 emergency with responsible and transparent AI: Evidence of fair and detrimental assessment
por: Rayhan, MD., et al.
Publicado: (2022) -
Interpretable Differential Diagnosis of Non-COVID Viral Pneumonia, Lung Opacity and COVID-19 Using Tuned Transfer Learning and Explainable AI
por: Islam, Md. Nazmul, et al.
Publicado: (2023) -
Shapley-Additive-Explanations-Based Factor Analysis for Dengue Severity Prediction using Machine Learning
por: Chowdhury, Shihab Uddin, et al.
Publicado: (2022) -
3D CNN-Based Speech Emotion Recognition Using K-Means Clustering and Spectrograms
por: Hajarolasvadi, Noushin, et al.
Publicado: (2019) -
Vision transformer and explainable transfer learning models for auto detection of kidney cyst, stone and tumor from CT-radiography
por: Islam, Md Nazmul, et al.
Publicado: (2022)