Cargando…
Multifunctional graphene heterogeneous nanochannel with voltage-tunable ion selectivity
Ion-selective nanoporous two-dimensional (2D) materials have shown extraordinary potential in energy conversion, ion separation, and nanofluidic devices; however, different applications require diverse nanochannel devices with different ion selectivity, which is limited by sample preparation and exp...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9391377/ https://www.ncbi.nlm.nih.gov/pubmed/35985996 http://dx.doi.org/10.1038/s41467-022-32590-9 |
Sumario: | Ion-selective nanoporous two-dimensional (2D) materials have shown extraordinary potential in energy conversion, ion separation, and nanofluidic devices; however, different applications require diverse nanochannel devices with different ion selectivity, which is limited by sample preparation and experimental techniques. Herein, we develop a heterogeneous graphene-based polyethylene terephthalate nanochannel (GPETNC) with controllable ion sieving to overcome those difficulties. Simply by adjusting the applied voltage, ion selectivity among K(+), Na(+), Li(+), Ca(2+), and Mg(2+) of the GPETNC can be immediately tuned. At negative voltages, the GPETNC serves as a mono/divalent ion selective device by impeding most divalent cations to transport through; at positive voltages, it mimics a biological K(+) nanochannel, which conducts K(+) much more rapidly than the other ions with K(+)/ions selectivity up to about 4.6. Besides, the GPETNC also exhibits the promise as a cation-responsive nanofluidic diode with the ability to rectify ion currents. Theoretical calculations indicate that the voltage-dependent ion enrichment/depletion inside the GPETNC affects the effective surface charge density of the utilized graphene subnanopores and thus leads to the electrically controllable ion sieving. This work provides ways to develop heterogeneous nanochannels with tunable ion selectivity toward broad applications. |
---|