Cargando…
Application of two-component neural network for exchange-correlation functional interpolation
Density functional theory (DFT) is one of the primary approaches to solving the many-body Schrodinger equation. The essential part of the DFT theory is the exchange-correlation (XC) functional, which can not be obtained in analytical form. Accordingly, the accuracy improvement of the DFT is mainly b...
Autores principales: | Ryabov, Alexander, Akhatov, Iskander, Zhilyaev, Petr |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9391383/ https://www.ncbi.nlm.nih.gov/pubmed/35986067 http://dx.doi.org/10.1038/s41598-022-18083-1 |
Ejemplares similares
-
Neural network interpolation of exchange-correlation functional
por: Ryabov, Alexander, et al.
Publicado: (2020) -
Atomistic study of the solid state inside graphene nanobubbles
por: Iakovlev, Evgeny, et al.
Publicado: (2017) -
Exchange–Correlation Functionals via Local
Interpolation along the Adiabatic Connection
por: Vuckovic, Stefan, et al.
Publicado: (2016) -
Bayesian interpolation with deep linear networks
por: Hanin, Boris, et al.
Publicado: (2023) -
Comparison of DEM Super-Resolution Methods Based on Interpolation and Neural Networks
por: Zhang, Yifan, et al.
Publicado: (2022)