Cargando…
Compression complexity with ordinal patterns for robust causal inference in irregularly sampled time series
Distinguishing cause from effect is a scientific challenge resisting solutions from mathematics, statistics, information theory and computer science. Compression-Complexity Causality (CCC) is a recently proposed interventional measure of causality, inspired by Wiener–Granger’s idea. It estimates cau...
Autores principales: | Kathpalia, Aditi, Manshour, Pouya, Paluš, Milan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9391387/ https://www.ncbi.nlm.nih.gov/pubmed/35986037 http://dx.doi.org/10.1038/s41598-022-18288-4 |
Ejemplares similares
-
Time-Reversibility, Causality and Compression-Complexity
por: Kathpalia, Aditi, et al.
Publicado: (2021) -
Causality and Information Transfer Between the Solar Wind and the Magnetosphere–Ionosphere System
por: Manshour, Pouya, et al.
Publicado: (2021) -
Data-based intervention approach for Complexity-Causality measure
por: Kathpalia, Aditi, et al.
Publicado: (2019) -
Granger-causal testing for irregularly sampled time series with application to nitrogen signalling in Arabidopsis
por: Heerah, Sachin, et al.
Publicado: (2021) -
Cross-Scale Causality and Information Transfer in Simulated Epileptic Seizures
por: Gupta, Kajari, et al.
Publicado: (2021)