Cargando…

Characterizing arrhythmia using machine learning analysis of Ca(2+) cycling in human cardiomyocytes

Accurate modeling of the heart electrophysiology to predict arrhythmia susceptibility remains a challenge. Current electrophysiological analyses are hypothesis-driven models drawing conclusions from changes in a small subset of electrophysiological parameters because of the difficulty of handling an...

Descripción completa

Detalles Bibliográficos
Autores principales: Pang, Jeremy K.S., Chia, Sabrina, Zhang, Jinqiu, Szyniarowski, Piotr, Stewart, Colin, Yang, Henry, Chan, Woon-Khiong, Ng, Shi Yan, Soh, Boon-Seng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9391413/
https://www.ncbi.nlm.nih.gov/pubmed/35839773
http://dx.doi.org/10.1016/j.stemcr.2022.06.005
_version_ 1784770850957819904
author Pang, Jeremy K.S.
Chia, Sabrina
Zhang, Jinqiu
Szyniarowski, Piotr
Stewart, Colin
Yang, Henry
Chan, Woon-Khiong
Ng, Shi Yan
Soh, Boon-Seng
author_facet Pang, Jeremy K.S.
Chia, Sabrina
Zhang, Jinqiu
Szyniarowski, Piotr
Stewart, Colin
Yang, Henry
Chan, Woon-Khiong
Ng, Shi Yan
Soh, Boon-Seng
author_sort Pang, Jeremy K.S.
collection PubMed
description Accurate modeling of the heart electrophysiology to predict arrhythmia susceptibility remains a challenge. Current electrophysiological analyses are hypothesis-driven models drawing conclusions from changes in a small subset of electrophysiological parameters because of the difficulty of handling and understanding large datasets. Thus, we develop a framework to train machine learning classifiers to distinguish between healthy and arrhythmic cardiomyocytes using their calcium cycling properties. By training machine learning classifiers on a generated dataset containing a total of 3,003 healthy derived cardiomyocytes and their various arrhythmic states, the multi-class models achieved >90% accuracy in predicting arrhythmia presence and type. We also demonstrate that a binary classifier trained to distinguish cardiotoxic arrhythmia from healthy electrophysiology could determine the key biological changes associated with that specific arrhythmia. Therefore, machine learning algorithms can be used to characterize underlying arrhythmic patterns in samples to improve in vitro preclinical models and complement current in vivo systems.
format Online
Article
Text
id pubmed-9391413
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-93914132022-08-21 Characterizing arrhythmia using machine learning analysis of Ca(2+) cycling in human cardiomyocytes Pang, Jeremy K.S. Chia, Sabrina Zhang, Jinqiu Szyniarowski, Piotr Stewart, Colin Yang, Henry Chan, Woon-Khiong Ng, Shi Yan Soh, Boon-Seng Stem Cell Reports Article Accurate modeling of the heart electrophysiology to predict arrhythmia susceptibility remains a challenge. Current electrophysiological analyses are hypothesis-driven models drawing conclusions from changes in a small subset of electrophysiological parameters because of the difficulty of handling and understanding large datasets. Thus, we develop a framework to train machine learning classifiers to distinguish between healthy and arrhythmic cardiomyocytes using their calcium cycling properties. By training machine learning classifiers on a generated dataset containing a total of 3,003 healthy derived cardiomyocytes and their various arrhythmic states, the multi-class models achieved >90% accuracy in predicting arrhythmia presence and type. We also demonstrate that a binary classifier trained to distinguish cardiotoxic arrhythmia from healthy electrophysiology could determine the key biological changes associated with that specific arrhythmia. Therefore, machine learning algorithms can be used to characterize underlying arrhythmic patterns in samples to improve in vitro preclinical models and complement current in vivo systems. Elsevier 2022-07-14 /pmc/articles/PMC9391413/ /pubmed/35839773 http://dx.doi.org/10.1016/j.stemcr.2022.06.005 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Pang, Jeremy K.S.
Chia, Sabrina
Zhang, Jinqiu
Szyniarowski, Piotr
Stewart, Colin
Yang, Henry
Chan, Woon-Khiong
Ng, Shi Yan
Soh, Boon-Seng
Characterizing arrhythmia using machine learning analysis of Ca(2+) cycling in human cardiomyocytes
title Characterizing arrhythmia using machine learning analysis of Ca(2+) cycling in human cardiomyocytes
title_full Characterizing arrhythmia using machine learning analysis of Ca(2+) cycling in human cardiomyocytes
title_fullStr Characterizing arrhythmia using machine learning analysis of Ca(2+) cycling in human cardiomyocytes
title_full_unstemmed Characterizing arrhythmia using machine learning analysis of Ca(2+) cycling in human cardiomyocytes
title_short Characterizing arrhythmia using machine learning analysis of Ca(2+) cycling in human cardiomyocytes
title_sort characterizing arrhythmia using machine learning analysis of ca(2+) cycling in human cardiomyocytes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9391413/
https://www.ncbi.nlm.nih.gov/pubmed/35839773
http://dx.doi.org/10.1016/j.stemcr.2022.06.005
work_keys_str_mv AT pangjeremyks characterizingarrhythmiausingmachinelearninganalysisofca2cyclinginhumancardiomyocytes
AT chiasabrina characterizingarrhythmiausingmachinelearninganalysisofca2cyclinginhumancardiomyocytes
AT zhangjinqiu characterizingarrhythmiausingmachinelearninganalysisofca2cyclinginhumancardiomyocytes
AT szyniarowskipiotr characterizingarrhythmiausingmachinelearninganalysisofca2cyclinginhumancardiomyocytes
AT stewartcolin characterizingarrhythmiausingmachinelearninganalysisofca2cyclinginhumancardiomyocytes
AT yanghenry characterizingarrhythmiausingmachinelearninganalysisofca2cyclinginhumancardiomyocytes
AT chanwoonkhiong characterizingarrhythmiausingmachinelearninganalysisofca2cyclinginhumancardiomyocytes
AT ngshiyan characterizingarrhythmiausingmachinelearninganalysisofca2cyclinginhumancardiomyocytes
AT sohboonseng characterizingarrhythmiausingmachinelearninganalysisofca2cyclinginhumancardiomyocytes