Cargando…
Generation of realistic synthetic data using Multimodal Neural Ordinary Differential Equations
Individual organizations, such as hospitals, pharmaceutical companies, and health insurance providers, are currently limited in their ability to collect data that are fully representative of a disease population. This can, in turn, negatively impact the generalization ability of statistical models a...
Autores principales: | Wendland, Philipp, Birkenbihl, Colin, Gomez-Freixa, Marc, Sood, Meemansa, Kschischo, Maik, Fröhlich, Holger |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9391444/ https://www.ncbi.nlm.nih.gov/pubmed/35986075 http://dx.doi.org/10.1038/s41746-022-00666-x |
Ejemplares similares
-
A Bayesian approach to estimating hidden variables as well as missing and wrong molecular interactions in ordinary differential equation-based mathematical models
por: Engelhardt, Benjamin, et al.
Publicado: (2017) -
Realistic simulation of virtual multi-scale, multi-modal patient trajectories using Bayesian networks and sparse auto-encoders
por: Sood, Meemansa, et al.
Publicado: (2020) -
Learning (from) the errors of a systems biology model
por: Engelhardt, Benjamin, et al.
Publicado: (2016) -
Transcriptomic forecasting with neural ordinary differential equations
por: Erbe, Rossin, et al.
Publicado: (2023) -
Neural ordinary differential equations with irregular and noisy data
por: Goyal, Pawan, et al.
Publicado: (2023)