Cargando…
Radiomics and deep learning methods for the prediction of 2-year overall survival in LUNG1 dataset
In this study, we tested and compared radiomics and deep learning-based approaches on the public LUNG1 dataset, for the prediction of 2-year overall survival (OS) in non-small cell lung cancer patients. Radiomic features were extracted from the gross tumor volume using Pyradiomics, while deep featur...
Autores principales: | Braghetto, Anna, Marturano, Francesca, Paiusco, Marta, Baiesi, Marco, Bettinelli, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9391464/ https://www.ncbi.nlm.nih.gov/pubmed/35986072 http://dx.doi.org/10.1038/s41598-022-18085-z |
Ejemplares similares
-
Author Correction: Radiomics and deep learning methods for the prediction of 2-year overall survival in LUNG1 dataset
por: Braghetto, Anna, et al.
Publicado: (2023) -
The ImSURE phantoms: a digital dataset for radiomic software benchmarking and investigation
por: Bettinelli, Andrea, et al.
Publicado: (2022) -
Additional Value of PET Radiomic Features for the Initial Staging of Prostate Cancer: A Systematic Review from the Literature
por: Guglielmo, Priscilla, et al.
Publicado: (2021) -
Role of radiomic analysis of [(18)F]fluoromethylcholine PET/CT in predicting biochemical recurrence in a cohort of intermediate and high risk prostate cancer patients at initial staging
por: Marturano, Francesca, et al.
Publicado: (2023) -
Additional Value of PET and CT Image-Based Features in the Detection of Occult Lymph Node Metastases in Lung Cancer: A Systematic Review of the Literature
por: Guglielmo, Priscilla, et al.
Publicado: (2023)