Cargando…

A lightweight neural network with multiscale feature enhancement for liver CT segmentation

Segmentation of abdominal Computed Tomography (CT) scan is essential for analyzing, diagnosing, and treating visceral organ diseases (e.g., hepatocellular carcinoma). This paper proposes a novel neural network (Res-PAC-UNet) that employs a fixed-width residual UNet backbone and Pyramid Atrous Convol...

Descripción completa

Detalles Bibliográficos
Autores principales: Ansari, Mohammed Yusuf, Yang, Yin, Balakrishnan, Shidin, Abinahed, Julien, Al-Ansari, Abdulla, Warfa, Mohamed, Almokdad, Omran, Barah, Ali, Omer, Ahmed, Singh, Ajay Vikram, Meher, Pramod Kumar, Bhadra, Jolly, Halabi, Osama, Azampour, Mohammad Farid, Navab, Nassir, Wendler, Thomas, Dakua, Sarada Prasad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9391485/
https://www.ncbi.nlm.nih.gov/pubmed/35986015
http://dx.doi.org/10.1038/s41598-022-16828-6
Descripción
Sumario:Segmentation of abdominal Computed Tomography (CT) scan is essential for analyzing, diagnosing, and treating visceral organ diseases (e.g., hepatocellular carcinoma). This paper proposes a novel neural network (Res-PAC-UNet) that employs a fixed-width residual UNet backbone and Pyramid Atrous Convolutions, providing a low disk utilization method for precise liver CT segmentation. The proposed network is trained on medical segmentation decathlon dataset using a modified surface loss function. Additionally, we evaluate its quantitative and qualitative performance; the Res16-PAC-UNet achieves a Dice coefficient of 0.950 ± 0.019 with less than half a million parameters. Alternatively, the Res32-PAC-UNet obtains a Dice coefficient of 0.958 ± 0.015 with an acceptable parameter count of approximately 1.2 million.