Cargando…
Uncertainty quantification: Can we trust artificial intelligence in drug discovery?
The problem of human trust is one of the most fundamental problems in applied artificial intelligence in drug discovery. In silico models have been widely used to accelerate the process of drug discovery in recent years. However, most of these models can only give reliable predictions within a limit...
Autores principales: | Yu, Jie, Wang, Dingyan, Zheng, Mingyue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9391523/ https://www.ncbi.nlm.nih.gov/pubmed/35996575 http://dx.doi.org/10.1016/j.isci.2022.104814 |
Ejemplares similares
-
Commentary: Artificial intelligence for everything: Can we trust it?
por: Akkara, John Davis, et al.
Publicado: (2020) -
A hybrid framework for improving uncertainty quantification in deep learning-based QSAR regression modeling
por: Wang, Dingyan, et al.
Publicado: (2021) -
Overcoming Fear, Uncertainty, and Doubt: Artificial Intelligence (AI) and the Value of Trust
por: Carpio, Erwin John T
Publicado: (2023) -
In AI We Trust: Ethics, Artificial Intelligence, and Reliability
por: Ryan, Mark
Publicado: (2020) -
Artificial intelligence in drug discovery and development
por: Paul, Debleena, et al.
Publicado: (2021)