Cargando…
Development and Validation of a Model for Laparoscopic Colorectal Surgical Instrument Recognition Using Convolutional Neural Network–Based Instance Segmentation and Videos of Laparoscopic Procedures
IMPORTANCE: Deep learning–based automatic surgical instrument recognition is an indispensable technology for surgical research and development. However, pixel-level recognition with high accuracy is required to make it suitable for surgical automation. OBJECTIVE: To develop a deep learning model tha...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9391983/ https://www.ncbi.nlm.nih.gov/pubmed/35984660 http://dx.doi.org/10.1001/jamanetworkopen.2022.26265 |
_version_ | 1784770974699225088 |
---|---|
author | Kitaguchi, Daichi Lee, Younae Hayashi, Kazuyuki Nakajima, Kei Kojima, Shigehiro Hasegawa, Hiro Takeshita, Nobuyoshi Mori, Kensaku Ito, Masaaki |
author_facet | Kitaguchi, Daichi Lee, Younae Hayashi, Kazuyuki Nakajima, Kei Kojima, Shigehiro Hasegawa, Hiro Takeshita, Nobuyoshi Mori, Kensaku Ito, Masaaki |
author_sort | Kitaguchi, Daichi |
collection | PubMed |
description | IMPORTANCE: Deep learning–based automatic surgical instrument recognition is an indispensable technology for surgical research and development. However, pixel-level recognition with high accuracy is required to make it suitable for surgical automation. OBJECTIVE: To develop a deep learning model that can simultaneously recognize 8 types of surgical instruments frequently used in laparoscopic colorectal operations and evaluate its recognition performance. DESIGN, SETTING, AND PARTICIPANTS: This quality improvement study was conducted at a single institution with a multi-institutional data set. Laparoscopic colorectal surgical videos recorded between April 1, 2009, and December 31, 2021, were included in the video data set. Deep learning–based instance segmentation, an image recognition approach that recognizes each object individually and pixel by pixel instead of roughly enclosing with a bounding box, was performed for 8 types of surgical instruments. MAIN OUTCOMES AND MEASURES: Average precision, calculated from the area under the precision-recall curve, was used as an evaluation metric. The average precision represents the number of instances of true-positive, false-positive, and false-negative results, and the mean average precision value for 8 types of surgical instruments was calculated. Five-fold cross-validation was used as the validation method. The annotation data set was split into 5 segments, of which 4 were used for training and the remainder for validation. The data set was split at the per-case level instead of the per-frame level; thus, the images extracted from an intraoperative video in the training set never appeared in the validation set. Validation was performed for all 5 validation sets, and the average mean average precision was calculated. RESULTS: In total, 337 laparoscopic colorectal surgical videos were used. Pixel-by-pixel annotation was manually performed for 81 760 labels on 38 628 static images, constituting the annotation data set. The mean average precisions of the instance segmentation for surgical instruments were 90.9% for 3 instruments, 90.3% for 4 instruments, 91.6% for 6 instruments, and 91.8% for 8 instruments. CONCLUSIONS AND RELEVANCE: A deep learning–based instance segmentation model that simultaneously recognizes 8 types of surgical instruments with high accuracy was successfully developed. The accuracy was maintained even when the number of types of surgical instruments increased. This model can be applied to surgical innovations, such as intraoperative navigation and surgical automation. |
format | Online Article Text |
id | pubmed-9391983 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Medical Association |
record_format | MEDLINE/PubMed |
spelling | pubmed-93919832022-09-06 Development and Validation of a Model for Laparoscopic Colorectal Surgical Instrument Recognition Using Convolutional Neural Network–Based Instance Segmentation and Videos of Laparoscopic Procedures Kitaguchi, Daichi Lee, Younae Hayashi, Kazuyuki Nakajima, Kei Kojima, Shigehiro Hasegawa, Hiro Takeshita, Nobuyoshi Mori, Kensaku Ito, Masaaki JAMA Netw Open Original Investigation IMPORTANCE: Deep learning–based automatic surgical instrument recognition is an indispensable technology for surgical research and development. However, pixel-level recognition with high accuracy is required to make it suitable for surgical automation. OBJECTIVE: To develop a deep learning model that can simultaneously recognize 8 types of surgical instruments frequently used in laparoscopic colorectal operations and evaluate its recognition performance. DESIGN, SETTING, AND PARTICIPANTS: This quality improvement study was conducted at a single institution with a multi-institutional data set. Laparoscopic colorectal surgical videos recorded between April 1, 2009, and December 31, 2021, were included in the video data set. Deep learning–based instance segmentation, an image recognition approach that recognizes each object individually and pixel by pixel instead of roughly enclosing with a bounding box, was performed for 8 types of surgical instruments. MAIN OUTCOMES AND MEASURES: Average precision, calculated from the area under the precision-recall curve, was used as an evaluation metric. The average precision represents the number of instances of true-positive, false-positive, and false-negative results, and the mean average precision value for 8 types of surgical instruments was calculated. Five-fold cross-validation was used as the validation method. The annotation data set was split into 5 segments, of which 4 were used for training and the remainder for validation. The data set was split at the per-case level instead of the per-frame level; thus, the images extracted from an intraoperative video in the training set never appeared in the validation set. Validation was performed for all 5 validation sets, and the average mean average precision was calculated. RESULTS: In total, 337 laparoscopic colorectal surgical videos were used. Pixel-by-pixel annotation was manually performed for 81 760 labels on 38 628 static images, constituting the annotation data set. The mean average precisions of the instance segmentation for surgical instruments were 90.9% for 3 instruments, 90.3% for 4 instruments, 91.6% for 6 instruments, and 91.8% for 8 instruments. CONCLUSIONS AND RELEVANCE: A deep learning–based instance segmentation model that simultaneously recognizes 8 types of surgical instruments with high accuracy was successfully developed. The accuracy was maintained even when the number of types of surgical instruments increased. This model can be applied to surgical innovations, such as intraoperative navigation and surgical automation. American Medical Association 2022-08-19 /pmc/articles/PMC9391983/ /pubmed/35984660 http://dx.doi.org/10.1001/jamanetworkopen.2022.26265 Text en Copyright 2022 Kitaguchi D et al. JAMA Network Open. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the CC-BY-NC-ND License. |
spellingShingle | Original Investigation Kitaguchi, Daichi Lee, Younae Hayashi, Kazuyuki Nakajima, Kei Kojima, Shigehiro Hasegawa, Hiro Takeshita, Nobuyoshi Mori, Kensaku Ito, Masaaki Development and Validation of a Model for Laparoscopic Colorectal Surgical Instrument Recognition Using Convolutional Neural Network–Based Instance Segmentation and Videos of Laparoscopic Procedures |
title | Development and Validation of a Model for Laparoscopic Colorectal Surgical Instrument Recognition Using Convolutional Neural Network–Based Instance Segmentation and Videos of Laparoscopic Procedures |
title_full | Development and Validation of a Model for Laparoscopic Colorectal Surgical Instrument Recognition Using Convolutional Neural Network–Based Instance Segmentation and Videos of Laparoscopic Procedures |
title_fullStr | Development and Validation of a Model for Laparoscopic Colorectal Surgical Instrument Recognition Using Convolutional Neural Network–Based Instance Segmentation and Videos of Laparoscopic Procedures |
title_full_unstemmed | Development and Validation of a Model for Laparoscopic Colorectal Surgical Instrument Recognition Using Convolutional Neural Network–Based Instance Segmentation and Videos of Laparoscopic Procedures |
title_short | Development and Validation of a Model for Laparoscopic Colorectal Surgical Instrument Recognition Using Convolutional Neural Network–Based Instance Segmentation and Videos of Laparoscopic Procedures |
title_sort | development and validation of a model for laparoscopic colorectal surgical instrument recognition using convolutional neural network–based instance segmentation and videos of laparoscopic procedures |
topic | Original Investigation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9391983/ https://www.ncbi.nlm.nih.gov/pubmed/35984660 http://dx.doi.org/10.1001/jamanetworkopen.2022.26265 |
work_keys_str_mv | AT kitaguchidaichi developmentandvalidationofamodelforlaparoscopiccolorectalsurgicalinstrumentrecognitionusingconvolutionalneuralnetworkbasedinstancesegmentationandvideosoflaparoscopicprocedures AT leeyounae developmentandvalidationofamodelforlaparoscopiccolorectalsurgicalinstrumentrecognitionusingconvolutionalneuralnetworkbasedinstancesegmentationandvideosoflaparoscopicprocedures AT hayashikazuyuki developmentandvalidationofamodelforlaparoscopiccolorectalsurgicalinstrumentrecognitionusingconvolutionalneuralnetworkbasedinstancesegmentationandvideosoflaparoscopicprocedures AT nakajimakei developmentandvalidationofamodelforlaparoscopiccolorectalsurgicalinstrumentrecognitionusingconvolutionalneuralnetworkbasedinstancesegmentationandvideosoflaparoscopicprocedures AT kojimashigehiro developmentandvalidationofamodelforlaparoscopiccolorectalsurgicalinstrumentrecognitionusingconvolutionalneuralnetworkbasedinstancesegmentationandvideosoflaparoscopicprocedures AT hasegawahiro developmentandvalidationofamodelforlaparoscopiccolorectalsurgicalinstrumentrecognitionusingconvolutionalneuralnetworkbasedinstancesegmentationandvideosoflaparoscopicprocedures AT takeshitanobuyoshi developmentandvalidationofamodelforlaparoscopiccolorectalsurgicalinstrumentrecognitionusingconvolutionalneuralnetworkbasedinstancesegmentationandvideosoflaparoscopicprocedures AT morikensaku developmentandvalidationofamodelforlaparoscopiccolorectalsurgicalinstrumentrecognitionusingconvolutionalneuralnetworkbasedinstancesegmentationandvideosoflaparoscopicprocedures AT itomasaaki developmentandvalidationofamodelforlaparoscopiccolorectalsurgicalinstrumentrecognitionusingconvolutionalneuralnetworkbasedinstancesegmentationandvideosoflaparoscopicprocedures |