Cargando…
Effects of osteoporosis on the biomechanics of various supplemental fixations co-applied with oblique lumbar interbody fusion (OLIF): a finite element analysis
BACKGROUND: Oblique lumbar interbody fusion (OLIF) is an important surgical modality for the treatment of degenerative lumbar spine disease. Various supplemental fixations can be co-applied with OLIF, increasing OLIF stability and reducing complications. However, it is unclear whether osteoporosis a...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9392247/ https://www.ncbi.nlm.nih.gov/pubmed/35986271 http://dx.doi.org/10.1186/s12891-022-05645-7 |
_version_ | 1784771020885852160 |
---|---|
author | Liu, Zi-Xuan Gao, Zi-Wei Chen, Chao Liu, Zi-Yang Cai, Xin-Yi Ren, Ya-Nan Sun, Xun Ma, Xin-Long Du, Cheng-Fei Yang, Qiang |
author_facet | Liu, Zi-Xuan Gao, Zi-Wei Chen, Chao Liu, Zi-Yang Cai, Xin-Yi Ren, Ya-Nan Sun, Xun Ma, Xin-Long Du, Cheng-Fei Yang, Qiang |
author_sort | Liu, Zi-Xuan |
collection | PubMed |
description | BACKGROUND: Oblique lumbar interbody fusion (OLIF) is an important surgical modality for the treatment of degenerative lumbar spine disease. Various supplemental fixations can be co-applied with OLIF, increasing OLIF stability and reducing complications. However, it is unclear whether osteoporosis affects the success of supplemental fixations; therefore, this study analyzed the effects of osteoporosis on various supplemental fixations co-applied with OLIF. METHODS: We developed and validated an L3-S1 finite element (FE) model; we assigned different material properties to each component and established models of the osteoporotic and normal bone lumbar spine. We explored the outcomes of OLIF combined with each of five supplemental fixations: standalone OLIF; OLIF with lateral plate fixation (OLIF + LPF); OLIF with translaminar facet joint fixation and unilateral pedicle screw fixation (OLIF + TFJF + UPSF); OLIF with unilateral pedicle screw fixation (OLIF + UPSF); and OLIF with bilateral pedicle screw fixation (OLIF + BPSF). Under the various working conditions, we calculated the ranges of motion (ROMs) of the normal bone and osteoporosis models, the maximum Mises stresses of the fixation instruments (MMSFIs), and the average Mises stresses on cancellous bone (AMSCBs). RESULTS: Compared with the normal bone OLIF model, no demonstrable change in any segmental ROM was apparent. The MMSFIs increased in all five osteoporotic OLIF models. In the OLIF + TFJF + UPSF model, the MMSFIs increased sharply in forward flexion and extension. The stress changes of the OLIF + UPSF, OLIF + BPSF, and OLIF + TFJF + UPSF models were similar; all stresses trended upward. The AMSCBs decreased in all five osteoporotic OLIF models during flexion, extension, lateral bending, and axial rotation. The average stress change of cancellous bone was most obvious under extension. The AMSCBs of the five OLIF models decreased by 14%, 23.44%, 21.97%, 40.56%, and 22.44% respectively. CONCLUSIONS: For some supplemental fixations, the AMSCBs were all reduced and the MMSFIs were all increased in the osteoporotic model, compared with the OLIF model of normal bone. Therefore, the biomechanical performance of an osteoporotic model may be inferior to the biomechanical performance of a normal model for the same fixation method; in some instances, it may increase the risks of fracture and internal fixation failure. |
format | Online Article Text |
id | pubmed-9392247 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-93922472022-08-21 Effects of osteoporosis on the biomechanics of various supplemental fixations co-applied with oblique lumbar interbody fusion (OLIF): a finite element analysis Liu, Zi-Xuan Gao, Zi-Wei Chen, Chao Liu, Zi-Yang Cai, Xin-Yi Ren, Ya-Nan Sun, Xun Ma, Xin-Long Du, Cheng-Fei Yang, Qiang BMC Musculoskelet Disord Research Article BACKGROUND: Oblique lumbar interbody fusion (OLIF) is an important surgical modality for the treatment of degenerative lumbar spine disease. Various supplemental fixations can be co-applied with OLIF, increasing OLIF stability and reducing complications. However, it is unclear whether osteoporosis affects the success of supplemental fixations; therefore, this study analyzed the effects of osteoporosis on various supplemental fixations co-applied with OLIF. METHODS: We developed and validated an L3-S1 finite element (FE) model; we assigned different material properties to each component and established models of the osteoporotic and normal bone lumbar spine. We explored the outcomes of OLIF combined with each of five supplemental fixations: standalone OLIF; OLIF with lateral plate fixation (OLIF + LPF); OLIF with translaminar facet joint fixation and unilateral pedicle screw fixation (OLIF + TFJF + UPSF); OLIF with unilateral pedicle screw fixation (OLIF + UPSF); and OLIF with bilateral pedicle screw fixation (OLIF + BPSF). Under the various working conditions, we calculated the ranges of motion (ROMs) of the normal bone and osteoporosis models, the maximum Mises stresses of the fixation instruments (MMSFIs), and the average Mises stresses on cancellous bone (AMSCBs). RESULTS: Compared with the normal bone OLIF model, no demonstrable change in any segmental ROM was apparent. The MMSFIs increased in all five osteoporotic OLIF models. In the OLIF + TFJF + UPSF model, the MMSFIs increased sharply in forward flexion and extension. The stress changes of the OLIF + UPSF, OLIF + BPSF, and OLIF + TFJF + UPSF models were similar; all stresses trended upward. The AMSCBs decreased in all five osteoporotic OLIF models during flexion, extension, lateral bending, and axial rotation. The average stress change of cancellous bone was most obvious under extension. The AMSCBs of the five OLIF models decreased by 14%, 23.44%, 21.97%, 40.56%, and 22.44% respectively. CONCLUSIONS: For some supplemental fixations, the AMSCBs were all reduced and the MMSFIs were all increased in the osteoporotic model, compared with the OLIF model of normal bone. Therefore, the biomechanical performance of an osteoporotic model may be inferior to the biomechanical performance of a normal model for the same fixation method; in some instances, it may increase the risks of fracture and internal fixation failure. BioMed Central 2022-08-19 /pmc/articles/PMC9392247/ /pubmed/35986271 http://dx.doi.org/10.1186/s12891-022-05645-7 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Article Liu, Zi-Xuan Gao, Zi-Wei Chen, Chao Liu, Zi-Yang Cai, Xin-Yi Ren, Ya-Nan Sun, Xun Ma, Xin-Long Du, Cheng-Fei Yang, Qiang Effects of osteoporosis on the biomechanics of various supplemental fixations co-applied with oblique lumbar interbody fusion (OLIF): a finite element analysis |
title | Effects of osteoporosis on the biomechanics of various supplemental fixations co-applied with oblique lumbar interbody fusion (OLIF): a finite element analysis |
title_full | Effects of osteoporosis on the biomechanics of various supplemental fixations co-applied with oblique lumbar interbody fusion (OLIF): a finite element analysis |
title_fullStr | Effects of osteoporosis on the biomechanics of various supplemental fixations co-applied with oblique lumbar interbody fusion (OLIF): a finite element analysis |
title_full_unstemmed | Effects of osteoporosis on the biomechanics of various supplemental fixations co-applied with oblique lumbar interbody fusion (OLIF): a finite element analysis |
title_short | Effects of osteoporosis on the biomechanics of various supplemental fixations co-applied with oblique lumbar interbody fusion (OLIF): a finite element analysis |
title_sort | effects of osteoporosis on the biomechanics of various supplemental fixations co-applied with oblique lumbar interbody fusion (olif): a finite element analysis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9392247/ https://www.ncbi.nlm.nih.gov/pubmed/35986271 http://dx.doi.org/10.1186/s12891-022-05645-7 |
work_keys_str_mv | AT liuzixuan effectsofosteoporosisonthebiomechanicsofvarioussupplementalfixationscoappliedwithobliquelumbarinterbodyfusionolifafiniteelementanalysis AT gaoziwei effectsofosteoporosisonthebiomechanicsofvarioussupplementalfixationscoappliedwithobliquelumbarinterbodyfusionolifafiniteelementanalysis AT chenchao effectsofosteoporosisonthebiomechanicsofvarioussupplementalfixationscoappliedwithobliquelumbarinterbodyfusionolifafiniteelementanalysis AT liuziyang effectsofosteoporosisonthebiomechanicsofvarioussupplementalfixationscoappliedwithobliquelumbarinterbodyfusionolifafiniteelementanalysis AT caixinyi effectsofosteoporosisonthebiomechanicsofvarioussupplementalfixationscoappliedwithobliquelumbarinterbodyfusionolifafiniteelementanalysis AT renyanan effectsofosteoporosisonthebiomechanicsofvarioussupplementalfixationscoappliedwithobliquelumbarinterbodyfusionolifafiniteelementanalysis AT sunxun effectsofosteoporosisonthebiomechanicsofvarioussupplementalfixationscoappliedwithobliquelumbarinterbodyfusionolifafiniteelementanalysis AT maxinlong effectsofosteoporosisonthebiomechanicsofvarioussupplementalfixationscoappliedwithobliquelumbarinterbodyfusionolifafiniteelementanalysis AT duchengfei effectsofosteoporosisonthebiomechanicsofvarioussupplementalfixationscoappliedwithobliquelumbarinterbodyfusionolifafiniteelementanalysis AT yangqiang effectsofosteoporosisonthebiomechanicsofvarioussupplementalfixationscoappliedwithobliquelumbarinterbodyfusionolifafiniteelementanalysis |