Cargando…
Deep Learning-Based CT Imaging in the Diagnosis of Treatment Effect of Pulmonary Nodules and Radiofrequency Ablation
To study the effect of computerized tomography (CT) images based on deep learning algorithms on the diagnosis of pulmonary nodules and the effect of radiofrequency ablation (RFA), the U-shaped fully convolutional neural network (FCNN) (U-Net) was enhanced. The convolutional neural network (CNN) algo...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9392615/ https://www.ncbi.nlm.nih.gov/pubmed/35996649 http://dx.doi.org/10.1155/2022/7326537 |
_version_ | 1784771102743986176 |
---|---|
author | Zhou, Chengwei Zhao, Xiaodong Zhao, Lili Liu, Jiayuan Chen, Zixuan Fang, Shuai |
author_facet | Zhou, Chengwei Zhao, Xiaodong Zhao, Lili Liu, Jiayuan Chen, Zixuan Fang, Shuai |
author_sort | Zhou, Chengwei |
collection | PubMed |
description | To study the effect of computerized tomography (CT) images based on deep learning algorithms on the diagnosis of pulmonary nodules and the effect of radiofrequency ablation (RFA), the U-shaped fully convolutional neural network (FCNN) (U-Net) was enhanced. The convolutional neural network (CNN) algorithm was compared with the U-Net algorithm, and segmentation performances were analyzed. Then, it was applied to the CT image diagnosis of 110 lung cancer patients admitted to hospital. The patients in the observation group (55 cases) were diagnosed based on the improved U-Net algorithm, while those in the control group (55 cases) were diagnosed by traditional methods and then treated with RFA. The Dice coefficient (0.8753) and intersection over union (IOU) (0.8788) obtained by the proposed algorithm were remarkably higher than the Dice coefficient (0.7212) and IOU (0.7231) obtained by the CNN algorithm, and the differences were considerable (P < 0.05). The boundary of the pulmonary nodule can be segmented more accurately by the proposed algorithm, which had the segmentation result closest to the gold standard among the three algorithms. The diagnostic accuracy of the pulmonary nodule in the observation group (95.3%) was superior to that of the control group (90.7%). The long diameter, volume, and maximum area of the pulmonary nodule of the observation group were significantly higher than those of the control group, with substantial differences (P < 0.05). Patients were reexamined after one, three, and six months of treatment, and 71 patients (64.55%) had complete remission, 32 patients (29.10%) had partial remission, 6 patients (5.45%) had stable disease, and 1 patient (0.90%) had disease progression. The remission rate (complete remission + partial remission) was 93.65%. The improved U-NET algorithm had good image segmentation performance and ideal segmentation effect. It can clearly display the shape of pulmonary nodules, locate the lesions, and accurately evaluate the therapeutic effect of RFA, which had clinical application value. |
format | Online Article Text |
id | pubmed-9392615 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-93926152022-08-21 Deep Learning-Based CT Imaging in the Diagnosis of Treatment Effect of Pulmonary Nodules and Radiofrequency Ablation Zhou, Chengwei Zhao, Xiaodong Zhao, Lili Liu, Jiayuan Chen, Zixuan Fang, Shuai Comput Intell Neurosci Research Article To study the effect of computerized tomography (CT) images based on deep learning algorithms on the diagnosis of pulmonary nodules and the effect of radiofrequency ablation (RFA), the U-shaped fully convolutional neural network (FCNN) (U-Net) was enhanced. The convolutional neural network (CNN) algorithm was compared with the U-Net algorithm, and segmentation performances were analyzed. Then, it was applied to the CT image diagnosis of 110 lung cancer patients admitted to hospital. The patients in the observation group (55 cases) were diagnosed based on the improved U-Net algorithm, while those in the control group (55 cases) were diagnosed by traditional methods and then treated with RFA. The Dice coefficient (0.8753) and intersection over union (IOU) (0.8788) obtained by the proposed algorithm were remarkably higher than the Dice coefficient (0.7212) and IOU (0.7231) obtained by the CNN algorithm, and the differences were considerable (P < 0.05). The boundary of the pulmonary nodule can be segmented more accurately by the proposed algorithm, which had the segmentation result closest to the gold standard among the three algorithms. The diagnostic accuracy of the pulmonary nodule in the observation group (95.3%) was superior to that of the control group (90.7%). The long diameter, volume, and maximum area of the pulmonary nodule of the observation group were significantly higher than those of the control group, with substantial differences (P < 0.05). Patients were reexamined after one, three, and six months of treatment, and 71 patients (64.55%) had complete remission, 32 patients (29.10%) had partial remission, 6 patients (5.45%) had stable disease, and 1 patient (0.90%) had disease progression. The remission rate (complete remission + partial remission) was 93.65%. The improved U-NET algorithm had good image segmentation performance and ideal segmentation effect. It can clearly display the shape of pulmonary nodules, locate the lesions, and accurately evaluate the therapeutic effect of RFA, which had clinical application value. Hindawi 2022-08-13 /pmc/articles/PMC9392615/ /pubmed/35996649 http://dx.doi.org/10.1155/2022/7326537 Text en Copyright © 2022 Chengwei Zhou et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Zhou, Chengwei Zhao, Xiaodong Zhao, Lili Liu, Jiayuan Chen, Zixuan Fang, Shuai Deep Learning-Based CT Imaging in the Diagnosis of Treatment Effect of Pulmonary Nodules and Radiofrequency Ablation |
title | Deep Learning-Based CT Imaging in the Diagnosis of Treatment Effect of Pulmonary Nodules and Radiofrequency Ablation |
title_full | Deep Learning-Based CT Imaging in the Diagnosis of Treatment Effect of Pulmonary Nodules and Radiofrequency Ablation |
title_fullStr | Deep Learning-Based CT Imaging in the Diagnosis of Treatment Effect of Pulmonary Nodules and Radiofrequency Ablation |
title_full_unstemmed | Deep Learning-Based CT Imaging in the Diagnosis of Treatment Effect of Pulmonary Nodules and Radiofrequency Ablation |
title_short | Deep Learning-Based CT Imaging in the Diagnosis of Treatment Effect of Pulmonary Nodules and Radiofrequency Ablation |
title_sort | deep learning-based ct imaging in the diagnosis of treatment effect of pulmonary nodules and radiofrequency ablation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9392615/ https://www.ncbi.nlm.nih.gov/pubmed/35996649 http://dx.doi.org/10.1155/2022/7326537 |
work_keys_str_mv | AT zhouchengwei deeplearningbasedctimaginginthediagnosisoftreatmenteffectofpulmonarynodulesandradiofrequencyablation AT zhaoxiaodong deeplearningbasedctimaginginthediagnosisoftreatmenteffectofpulmonarynodulesandradiofrequencyablation AT zhaolili deeplearningbasedctimaginginthediagnosisoftreatmenteffectofpulmonarynodulesandradiofrequencyablation AT liujiayuan deeplearningbasedctimaginginthediagnosisoftreatmenteffectofpulmonarynodulesandradiofrequencyablation AT chenzixuan deeplearningbasedctimaginginthediagnosisoftreatmenteffectofpulmonarynodulesandradiofrequencyablation AT fangshuai deeplearningbasedctimaginginthediagnosisoftreatmenteffectofpulmonarynodulesandradiofrequencyablation |