Cargando…
On the Critical–Subcritical Moments of Moments of Random Characteristic Polynomials: A GMC Perspective
We study the ‘critical moments’ of subcritical Gaussian multiplicative chaos (GMCs) in dimensions [Formula: see text] . In particular, we establish a fully explicit formula for the leading order asymptotics, which is closely related to large deviation results for GMCs and demonstrates a similar univ...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9392718/ https://www.ncbi.nlm.nih.gov/pubmed/36003142 http://dx.doi.org/10.1007/s00220-022-04429-3 |
_version_ | 1784771125267398656 |
---|---|
author | Keating, Jonathan P. Wong, Mo Dick |
author_facet | Keating, Jonathan P. Wong, Mo Dick |
author_sort | Keating, Jonathan P. |
collection | PubMed |
description | We study the ‘critical moments’ of subcritical Gaussian multiplicative chaos (GMCs) in dimensions [Formula: see text] . In particular, we establish a fully explicit formula for the leading order asymptotics, which is closely related to large deviation results for GMCs and demonstrates a similar universality feature. We conjecture that our result correctly describes the behaviour of analogous moments of moments of random matrices, or more generally structures which are asymptotically Gaussian and log-correlated in the entire mesoscopic scale. This is verified for an integer case in the setting of circular unitary ensemble, extending and strengthening the results of Claeys et al. and Fahs to higher-order moments. |
format | Online Article Text |
id | pubmed-9392718 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-93927182022-08-22 On the Critical–Subcritical Moments of Moments of Random Characteristic Polynomials: A GMC Perspective Keating, Jonathan P. Wong, Mo Dick Commun Math Phys Article We study the ‘critical moments’ of subcritical Gaussian multiplicative chaos (GMCs) in dimensions [Formula: see text] . In particular, we establish a fully explicit formula for the leading order asymptotics, which is closely related to large deviation results for GMCs and demonstrates a similar universality feature. We conjecture that our result correctly describes the behaviour of analogous moments of moments of random matrices, or more generally structures which are asymptotically Gaussian and log-correlated in the entire mesoscopic scale. This is verified for an integer case in the setting of circular unitary ensemble, extending and strengthening the results of Claeys et al. and Fahs to higher-order moments. Springer Berlin Heidelberg 2022-06-29 2022 /pmc/articles/PMC9392718/ /pubmed/36003142 http://dx.doi.org/10.1007/s00220-022-04429-3 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Keating, Jonathan P. Wong, Mo Dick On the Critical–Subcritical Moments of Moments of Random Characteristic Polynomials: A GMC Perspective |
title | On the Critical–Subcritical Moments of Moments of Random Characteristic Polynomials: A GMC Perspective |
title_full | On the Critical–Subcritical Moments of Moments of Random Characteristic Polynomials: A GMC Perspective |
title_fullStr | On the Critical–Subcritical Moments of Moments of Random Characteristic Polynomials: A GMC Perspective |
title_full_unstemmed | On the Critical–Subcritical Moments of Moments of Random Characteristic Polynomials: A GMC Perspective |
title_short | On the Critical–Subcritical Moments of Moments of Random Characteristic Polynomials: A GMC Perspective |
title_sort | on the critical–subcritical moments of moments of random characteristic polynomials: a gmc perspective |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9392718/ https://www.ncbi.nlm.nih.gov/pubmed/36003142 http://dx.doi.org/10.1007/s00220-022-04429-3 |
work_keys_str_mv | AT keatingjonathanp onthecriticalsubcriticalmomentsofmomentsofrandomcharacteristicpolynomialsagmcperspective AT wongmodick onthecriticalsubcriticalmomentsofmomentsofrandomcharacteristicpolynomialsagmcperspective |