Cargando…
Identification of microstructures critically affecting material properties using machine learning framework based on metallurgists’ thinking process
In materials science, machine learning has been intensively researched and used in various applications. However, it is still far from achieving intelligence comparable to that of human experts in terms of creativity and explainability. In this paper, we investigate whether machine learning can acqu...
Autores principales: | Noguchi, Satoshi, Wang, Hui, Inoue, Junya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9392751/ https://www.ncbi.nlm.nih.gov/pubmed/35987983 http://dx.doi.org/10.1038/s41598-022-17614-0 |
Ejemplares similares
-
Unsupervised microstructure segmentation by mimicking metallurgists’ approach to pattern recognition
por: Kim, Hoheok, et al.
Publicado: (2020) -
Author Correction: Unsupervised microstructure segmentation by mimicking metallurgists’ approach to pattern recognition
por: Kim, Hoheok, et al.
Publicado: (2021) -
Casting Processes from the Standpoint of the Metallurgist
por: Wilkinson, Mearle W.
Publicado: (1922) -
Metallurgy for the non-metallurgist
por: Chandler, Harry
Publicado: (1998) -
Solid state physics for metallurgists
por: Weiss, Richard J, et al.
Publicado: (2013)