Cargando…
Evaluation of a hybrid pipeline for automated segmentation of solid lesions based on mathematical algorithms and deep learning
We evaluate the accuracy of an original hybrid segmentation pipeline, combining variational and deep learning methods, in the segmentation of CT scans of stented aortic aneurysms, abdominal organs and brain lesions. The hybrid pipeline is trained on 50 aortic CT scans and tested on 10. Additionally,...
Autores principales: | Burrows, Liam, Chen, Ke, Guo, Weihong, Hossack, Martin, McWilliams, Richard G., Torella, Francesco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9392778/ https://www.ncbi.nlm.nih.gov/pubmed/35987824 http://dx.doi.org/10.1038/s41598-022-18173-0 |
Ejemplares similares
-
A fully automated deep learning pipeline for high-throughput colony segmentation and classification
por: Carl, Sarah H., et al.
Publicado: (2020) -
A Deep Learning Pipeline to Automate High-Resolution Arterial Segmentation With or Without Intravenous Contrast
por: Chandrashekar, Anirudh, et al.
Publicado: (2022) -
Automated 3-dimensional MRI segmentation for the posterosuperior rotator cuff tear lesion using deep learning algorithm
por: Lee, Su Hyun, et al.
Publicado: (2023) -
A pipeline for automated deep learning liver segmentation (PADLLS) from contrast enhanced CT exams
por: Senthilvelan, Jayasuriya, et al.
Publicado: (2022) -
Feasibility of Automated Segmentation of Pigmented Choroidal Lesions in OCT Data With Deep Learning
por: Valmaggia, Philippe, et al.
Publicado: (2022)