Cargando…

Enhancing memory capacity by experimentally slowing theta frequency oscillations using combined EEG-tACS

The coupling of gamma oscillation (~ 40+ Hz) amplitude to the phase of ongoing theta (~ 6 Hz) oscillations has been proposed to be directly relevant for memory performance. Current theories suggest that memory capacity scales with number of gamma cycles that can be fitted into the preferred phase of...

Descripción completa

Detalles Bibliográficos
Autores principales: Aktürk, Tuba, de Graaf, Tom A., Güntekin, Bahar, Hanoğlu, Lütfü, Sack, Alexander T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9392784/
https://www.ncbi.nlm.nih.gov/pubmed/35987918
http://dx.doi.org/10.1038/s41598-022-18665-z
_version_ 1784771140422467584
author Aktürk, Tuba
de Graaf, Tom A.
Güntekin, Bahar
Hanoğlu, Lütfü
Sack, Alexander T.
author_facet Aktürk, Tuba
de Graaf, Tom A.
Güntekin, Bahar
Hanoğlu, Lütfü
Sack, Alexander T.
author_sort Aktürk, Tuba
collection PubMed
description The coupling of gamma oscillation (~ 40+ Hz) amplitude to the phase of ongoing theta (~ 6 Hz) oscillations has been proposed to be directly relevant for memory performance. Current theories suggest that memory capacity scales with number of gamma cycles that can be fitted into the preferred phase of a theta cycle. Following this logic, transcranial alternating current stimulation (tACS) may be used to adjust theta cycles (increasing/decreasing theta frequency) to decrease or increase memory performance during stimulation. Here, we used individualized EEG-informed theta tACS to (1) experimentally “slow down” individual theta frequency (ITF), (2) evaluate cognitive after effects on a battery of memory and learning tasks, and (3) link the cognitive performance changes to tACS-induced effects on theta-band oscillations as measured by post EEG. We found frequency- and task-specific tACS after effects demonstrating a specific enhancement in memory capacity. This tACS-induced cognitive enhancement was specific to the visual memory task performed immediately after tACS offset, and specific to the ITF-1 Hz (slowing) stimulation condition and thus following a protocol specifically designed to slow down theta frequency to enhance memory capacity. Follow-up correlation analyses in this group linked the enhanced memory performance to increased left frontal-parietal theta-band connectivity. Interestingly, resting-state theta power immediately after tACS offset revealed a theta power increase not for the ITF-1 Hz group, but only for the ITF group where the tACS frequency was ‘optimal’ for entrainment. These results suggest that while individually calibrated tACS at peak frequency maximally modulates resting-state oscillatory power, tACS stimulation slightly below this optimal peak theta frequency is better suited to enhance memory capacity performance. Importantly, our results further suggest that such cognitive enhancement effects can last beyond the period of stimulation and are linked to increased network connectivity, opening the door towards more clinical and applied relevance of using tACS in cognitive rehabilitation and/or neurocognitive enhancement.
format Online
Article
Text
id pubmed-9392784
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-93927842022-08-22 Enhancing memory capacity by experimentally slowing theta frequency oscillations using combined EEG-tACS Aktürk, Tuba de Graaf, Tom A. Güntekin, Bahar Hanoğlu, Lütfü Sack, Alexander T. Sci Rep Article The coupling of gamma oscillation (~ 40+ Hz) amplitude to the phase of ongoing theta (~ 6 Hz) oscillations has been proposed to be directly relevant for memory performance. Current theories suggest that memory capacity scales with number of gamma cycles that can be fitted into the preferred phase of a theta cycle. Following this logic, transcranial alternating current stimulation (tACS) may be used to adjust theta cycles (increasing/decreasing theta frequency) to decrease or increase memory performance during stimulation. Here, we used individualized EEG-informed theta tACS to (1) experimentally “slow down” individual theta frequency (ITF), (2) evaluate cognitive after effects on a battery of memory and learning tasks, and (3) link the cognitive performance changes to tACS-induced effects on theta-band oscillations as measured by post EEG. We found frequency- and task-specific tACS after effects demonstrating a specific enhancement in memory capacity. This tACS-induced cognitive enhancement was specific to the visual memory task performed immediately after tACS offset, and specific to the ITF-1 Hz (slowing) stimulation condition and thus following a protocol specifically designed to slow down theta frequency to enhance memory capacity. Follow-up correlation analyses in this group linked the enhanced memory performance to increased left frontal-parietal theta-band connectivity. Interestingly, resting-state theta power immediately after tACS offset revealed a theta power increase not for the ITF-1 Hz group, but only for the ITF group where the tACS frequency was ‘optimal’ for entrainment. These results suggest that while individually calibrated tACS at peak frequency maximally modulates resting-state oscillatory power, tACS stimulation slightly below this optimal peak theta frequency is better suited to enhance memory capacity performance. Importantly, our results further suggest that such cognitive enhancement effects can last beyond the period of stimulation and are linked to increased network connectivity, opening the door towards more clinical and applied relevance of using tACS in cognitive rehabilitation and/or neurocognitive enhancement. Nature Publishing Group UK 2022-08-20 /pmc/articles/PMC9392784/ /pubmed/35987918 http://dx.doi.org/10.1038/s41598-022-18665-z Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Aktürk, Tuba
de Graaf, Tom A.
Güntekin, Bahar
Hanoğlu, Lütfü
Sack, Alexander T.
Enhancing memory capacity by experimentally slowing theta frequency oscillations using combined EEG-tACS
title Enhancing memory capacity by experimentally slowing theta frequency oscillations using combined EEG-tACS
title_full Enhancing memory capacity by experimentally slowing theta frequency oscillations using combined EEG-tACS
title_fullStr Enhancing memory capacity by experimentally slowing theta frequency oscillations using combined EEG-tACS
title_full_unstemmed Enhancing memory capacity by experimentally slowing theta frequency oscillations using combined EEG-tACS
title_short Enhancing memory capacity by experimentally slowing theta frequency oscillations using combined EEG-tACS
title_sort enhancing memory capacity by experimentally slowing theta frequency oscillations using combined eeg-tacs
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9392784/
https://www.ncbi.nlm.nih.gov/pubmed/35987918
http://dx.doi.org/10.1038/s41598-022-18665-z
work_keys_str_mv AT akturktuba enhancingmemorycapacitybyexperimentallyslowingthetafrequencyoscillationsusingcombinedeegtacs
AT degraaftoma enhancingmemorycapacitybyexperimentallyslowingthetafrequencyoscillationsusingcombinedeegtacs
AT guntekinbahar enhancingmemorycapacitybyexperimentallyslowingthetafrequencyoscillationsusingcombinedeegtacs
AT hanoglulutfu enhancingmemorycapacitybyexperimentallyslowingthetafrequencyoscillationsusingcombinedeegtacs
AT sackalexandert enhancingmemorycapacitybyexperimentallyslowingthetafrequencyoscillationsusingcombinedeegtacs