Cargando…
A secondary EWMA-based dictionary learning algorithm for polynomial phase signal denoising
Under the influence of additive white Gaussian noise, sparse representation cannot effectively remove noise associated with the polynomial phase signal (PPS) via most dictionary learning algorithms whose training data come from the noisy signal, such as K-SVD and RLS-DLA. In this paper, we present a...
Autores principales: | Ou, Guojian, Zou, Sai, Liu, Song, Tang, Jianguo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9392793/ https://www.ncbi.nlm.nih.gov/pubmed/35987758 http://dx.doi.org/10.1038/s41598-022-16644-y |
Ejemplares similares
-
The Time-of-Arrival Offset Estimation in Neural Network Atomic Denoising in Wireless Location
por: Hu, Yunbing, et al.
Publicado: (2022) -
An enhanced nonparametric EWMA sign control chart using sequential mechanism
por: Riaz, Muhammad, et al.
Publicado: (2019) -
Monitoring non-parametric profiles using adaptive EWMA control chart
por: Abbasi, Saddam Akber, et al.
Publicado: (2022) -
Dictionary learning algorithms and applications
por: Dumitrescu, Bogdan, et al.
Publicado: (2018) -
Symmetry of gamma distribution data about the mean after processing with EWMA function
por: Hamasha, Mohammad M., et al.
Publicado: (2023)