Cargando…
A machine learning model for predicting patients with major depressive disorder: A study based on transcriptomic data
BACKGROUND: Identifying new biomarkers of major depressive disorder (MDD) would be of great significance for its early diagnosis and treatment. Herein, we constructed a diagnostic model of MDD using machine learning methods. METHODS: The GSE98793 and GSE19738 datasets were obtained from the Gene Exp...
Autores principales: | Liu, Sitong, Lu, Tong, Zhao, Qian, Fu, Bingbing, Wang, Han, Li, Ginhong, Yang, Fan, Huang, Juan, Lyu, Nan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9393475/ https://www.ncbi.nlm.nih.gov/pubmed/36003956 http://dx.doi.org/10.3389/fnins.2022.949609 |
Ejemplares similares
-
Identification of Diagnostic Markers for Major Depressive Disorder Using Machine Learning Methods
por: Zhao, Shu, et al.
Publicado: (2021) -
The diagnostic performance of machine learning based on resting-state functional magnetic resonance imaging data for major depressive disorders: a systematic review and meta-analysis
por: Chen, Yanjing, et al.
Publicado: (2023) -
Exosomes may be the carrier of acupuncture treatment for major depressive disorder
por: Lyu, Qin, et al.
Publicado: (2023) -
Machine learning approaches and non-linear processing of extracted components in frontal region to predict rTMS treatment response in major depressive disorder
por: Ebrahimzadeh, Elias, et al.
Publicado: (2023) -
Affective priming in major depressive disorder
por: LeMoult, Joelle, et al.
Publicado: (2012)