Cargando…

Leveraging AI for advanced analytics to forecast altered tourism industry parameters: A COVID-19 motivated study

COVID-19 pandemic has given a sudden shock to economy indices worldwide and especially to the tourism sector, which is already very sensitive to such crises as natural calamities, terrorist activities, virus outbreaks and unwanted conditions. The economic implications for a reduction in tourism dema...

Descripción completa

Detalles Bibliográficos
Autores principales: Kumar, Ankur, Misra, Subhas Chandra, Chan, Felix T.S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9394102/
https://www.ncbi.nlm.nih.gov/pubmed/36032358
http://dx.doi.org/10.1016/j.eswa.2022.118628
Descripción
Sumario:COVID-19 pandemic has given a sudden shock to economy indices worldwide and especially to the tourism sector, which is already very sensitive to such crises as natural calamities, terrorist activities, virus outbreaks and unwanted conditions. The economic implications for a reduction in tourism demand, and the need to analyse post-COVID-19 tourism motivates our research. This study aims to forecast the future trends for foreign tourist arrivals and foreign exchange earnings for India and to formulate a model to predict the future trends based on the COVID-19 parameters, vaccinations and stringency index (Government travelling guidelines). In the study, we have developed artificial intelligence models (random forest, linear regression) using the stacked based ensemble learning method for the development of base models and meta models for the study of COVID-19 and its effect on the tourism industry. The architecture of a stacking model consists of two or more base models, often referred to as level-0 models, and a meta-model that combines the predictions of the base models, and is referred to as a level-1 model (Smyth & Wolpert, 1999). The results show that the projected losses require quick action on developing new practices to sustain and complement the resilience of tourism per se.