Cargando…
EEG-Based Emotion Classification Using Improved Cross-Connected Convolutional Neural Network
The use of electroencephalography to recognize human emotions is a key technology for advancing human–computer interactions. This study proposes an improved deep convolutional neural network model for emotion classification using a non-end-to-end training method that combines bottom-, middle-, and t...
Autores principales: | Dai, Jinxiao, Xi, Xugang, Li, Ge, Wang, Ting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9394254/ https://www.ncbi.nlm.nih.gov/pubmed/35892418 http://dx.doi.org/10.3390/brainsci12080977 |
Ejemplares similares
-
A Music Emotion Classification Model Based on the Improved Convolutional Neural Network
por: Jia, Xiaosong
Publicado: (2022) -
EEG-Based Emotion Recognition by Convolutional Neural Network with Multi-Scale Kernels
por: Phan, Tran-Dac-Thinh, et al.
Publicado: (2021) -
Investigating the Use of Pretrained Convolutional Neural Network on Cross-Subject and Cross-Dataset EEG Emotion Recognition
por: Cimtay, Yucel, et al.
Publicado: (2020) -
High Dimensional Convolutional Neural Network for EEG Connectivity-Based Diagnosis of ADHD
por: Mafi, Majid, et al.
Publicado: (2022) -
Research on Emotion Recognition of EEG Signal Based on Convolutional Neural Networks and High-Order Cross-Analysis
por: Fan, Chengcheng, et al.
Publicado: (2022)