Cargando…
CR-GCN: Channel-Relationships-Based Graph Convolutional Network for EEG Emotion Recognition
Electroencephalography (EEG) is recorded by electrodes from different areas of the brain and is commonly used to measure neuronal activity. EEG-based methods have been widely used for emotion recognition recently. However, most current methods for EEG-based emotion recognition do not fully exploit t...
Autores principales: | Jia, Jingjing, Zhang, Bofeng, Lv, Hehe, Xu, Zhikang, Hu, Shengxiang, Li, Haiyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9394289/ https://www.ncbi.nlm.nih.gov/pubmed/35892427 http://dx.doi.org/10.3390/brainsci12080987 |
Ejemplares similares
-
CAttSleepNet: Automatic End-to-End Sleep Staging Using Attention-Based Deep Neural Networks on Single-Channel EEG
por: Li, Tingting, et al.
Publicado: (2022) -
Deep Link-Prediction Based on the Local Structure of Bipartite Networks
por: Lv, Hehe, et al.
Publicado: (2022) -
GAS-GCN: Gated Action-Specific Graph Convolutional Networks for Skeleton-Based Action Recognition
por: Chan, Wensong, et al.
Publicado: (2020) -
Fusion Graph Representation of EEG for Emotion Recognition
por: Li, Menghang, et al.
Publicado: (2023) -
Multi-channel EEG emotion recognition through residual graph attention neural network
por: Chao, Hao, et al.
Publicado: (2023)