Cargando…
Visual Clustering of Transcriptomic Data from Primary and Metastatic Tumors—Dependencies and Novel Pitfalls
Personalized oncology is a rapidly evolving area and offers cancer patients therapy options that are more specific than ever. However, there is still a lack of understanding regarding transcriptomic similarities or differences of metastases and corresponding primary sites. Applying two unsupervised...
Autores principales: | Marquardt, André, Kollmannsberger, Philip, Krebs, Markus, Argentiero, Antonella, Knott, Markus, Solimando, Antonio Giovanni, Kerscher, Alexander Georg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9394300/ https://www.ncbi.nlm.nih.gov/pubmed/35893071 http://dx.doi.org/10.3390/genes13081335 |
Ejemplares similares
-
Subgroup-Independent Mapping of Renal Cell Carcinoma—Machine Learning Reveals Prognostic Mitochondrial Gene Signature Beyond Histopathologic Boundaries
por: Marquardt, André, et al.
Publicado: (2021) -
Angiogenesis as Therapeutic Target in Metastatic Prostate Cancer – Narrowing the Gap Between Bench and Bedside
por: Solimando, Antonio Giovanni, et al.
Publicado: (2022) -
Aplastic Anemia as a Roadmap for Bone Marrow Failure: An Overview and a Clinical Workflow
por: Solimando, Antonio G., et al.
Publicado: (2022) -
Anti-angiogenesis and Immunotherapy: Novel Paradigms to Envision Tailored Approaches in Renal Cell-Carcinoma
por: Argentiero, Antonella, et al.
Publicado: (2020) -
Predicting Microenvironment in CXCR4- and FAP-Positive Solid Tumors—A Pan-Cancer Machine Learning Workflow for Theranostic Target Structures
por: Marquardt, André, et al.
Publicado: (2023)