Cargando…
Improved Artificial Neural Network Training Based on Response Surface Methodology for Membrane Flux Prediction
This paper presents an improved artificial neural network (ANN) training using response surface methodology (RSM) optimization for membrane flux prediction. The improved ANN utilizes the design of experiment (DoE) technique to determine the neural network parameters. The technique has the advantage...
Autores principales: | Ibrahim, Syahira, Abdul Wahab, Norhaliza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9394359/ https://www.ncbi.nlm.nih.gov/pubmed/35893444 http://dx.doi.org/10.3390/membranes12080726 |
Ejemplares similares
-
Response Surface Methodology and Artificial Neural Network Modelling of Membrane Rotating Biological Contactors for Wastewater Treatment
por: Irfan, Muhammad, et al.
Publicado: (2022) -
Modeling and Sensitivity Analysis of the Forward Osmosis Process to Predict Membrane Flux Using a Novel Combination of Neural Network and Response Surface Methodology Techniques
por: Jawad, Jasir, et al.
Publicado: (2021) -
Flux prediction using artificial neural network (ANN) for the upper part of glycolysis
por: Ajjolli Nagaraja, Anamya, et al.
Publicado: (2019) -
Data on artificial neural network and response surface methodology analysis of biodiesel production
por: Ayoola, A.A., et al.
Publicado: (2020) -
Artificial Neural Network and Response Surface Methodology Modeling in Ionic Conductivity Predictions of Phthaloylchitosan-Based Gel Polymer Electrolyte
por: Azzahari, Ahmad Danial, et al.
Publicado: (2016)