Cargando…
Deep Compressive Sensing on ECG Signals with Modified Inception Block and LSTM
In practical electrocardiogram (ECG) monitoring, there are some challenges in reducing the data burden and energy costs. Therefore, compressed sensing (CS) which can conduct under-sampling and reconstruction at the same time is adopted in the ECG monitoring application. Recently, deep learning used...
Autores principales: | Hua, Jing, Rao, Jue, Peng, Yingqiong, Liu, Jizhong, Tang, Jianjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9394370/ https://www.ncbi.nlm.nih.gov/pubmed/35893004 http://dx.doi.org/10.3390/e24081024 |
Ejemplares similares
-
ECG signal classification based on deep CNN and BiLSTM
por: Cheng, Jinyong, et al.
Publicado: (2021) -
Deep Convolutional Generative Adversarial Network with LSTM for ECG Denoising
por: Wang, Huidong, et al.
Publicado: (2023) -
Inception-LSTM Human Motion Recognition with Channel Attention Mechanism
por: Xu, Yongtao, et al.
Publicado: (2022) -
Block sparsity-based joint compressed sensing recovery of multi-channel ECG signals
por: Singh, Anurag, et al.
Publicado: (2017) -
Video Compressive Sensing Reconstruction Using Unfolded LSTM
por: Xia, Kaiguo, et al.
Publicado: (2022)