Cargando…

Development of In Vitro Assays for Advancing Radioimmunotherapy against Brain Tumors

Glioblastoma (GBM) is the most common primary brain tumor. Due to high resistance to treatment, local invasion, and a high risk of recurrence, GBM patient prognoses are often dismal, with median survival around 15 months. The current standard of care is threefold: surgery, radiation therapy, and che...

Descripción completa

Detalles Bibliográficos
Autores principales: Walter, Yohan, Hubbard, Anne, Benoit, Allie, Jank, Erika, Salas, Olivia, Jordan, Destiny, Ekpenyong, Andrew
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9394411/
https://www.ncbi.nlm.nih.gov/pubmed/35892697
http://dx.doi.org/10.3390/biomedicines10081796
Descripción
Sumario:Glioblastoma (GBM) is the most common primary brain tumor. Due to high resistance to treatment, local invasion, and a high risk of recurrence, GBM patient prognoses are often dismal, with median survival around 15 months. The current standard of care is threefold: surgery, radiation therapy, and chemotherapy with temozolomide (TMZ). However, patient survival has only marginally improved. Radioimmunotherapy (RIT) is a fourth modality under clinical trials and aims at combining immunotherapeutic agents with radiotherapy. Here, we develop in vitro assays for the rapid evaluation of RIT strategies. Using a standard cell irradiator and an Electric Cell Impedance Sensor, we quantify cell migration following the combination of radiotherapy and chemotherapy with TMZ and RIT with durvalumab, a PD-L1 immune checkpoint inhibitor. We measure cell survival using a cloud-based clonogenic assay. Irradiated T98G and U87 GBM cells migrate significantly (p < 0.05) more than untreated cells in the first 20–40 h post-treatment. Addition of TMZ increases migration rates for T98G at 20 Gy (p < 0.01). Neither TMZ nor durvalumab significantly change cell survival in 21 days post-treatment. Interestingly, durvalumab abolishes the enhanced migration effect, indicating possible potency against local invasion. These results provide parameters for the rapid supplementary evaluation of RIT against brain tumors.