Cargando…
Improving Image Super-Resolution Based on Multiscale Generative Adversarial Networks
Convolutional neural networks have greatly improved the performance of image super-resolution. However, perceptual networks have problems such as blurred line structures and a lack of high-frequency information when reconstructing image textures. To mitigate these issues, a generative adversarial ne...
Autores principales: | Yuan, Cao, Deng, Kaidi, Li, Chen, Zhang, Xueting, Li, Yaqin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9394415/ https://www.ncbi.nlm.nih.gov/pubmed/35893009 http://dx.doi.org/10.3390/e24081030 |
Ejemplares similares
-
Multiscale Attention Fusion for Depth Map Super-Resolution Generative Adversarial Networks
por: Xu, Dan, et al.
Publicado: (2023) -
Super-Resolution Reconstruction Method of Pavement Crack Images Based on an Improved Generative Adversarial Network
por: Yuan, Bo, et al.
Publicado: (2022) -
Super-Resolution Generative Adversarial Network Based on the Dual Dimension Attention Mechanism for Biometric Image Super-Resolution
por: Huang, Chi-En, et al.
Publicado: (2021) -
A new generative adversarial network for medical images super resolution
por: Ahmad, Waqar, et al.
Publicado: (2022) -
Improved Generative Adversarial Network for Super-Resolution Reconstruction of Coal Photomicrographs
por: Zou, Liang, et al.
Publicado: (2023)