Cargando…
Matteucinol combined with temozolomide inhibits glioblastoma proliferation, invasion, and progression: an in vitro, in silico, and in vivo study
Glioblastoma is the most prevalent and malignant brain tumor identified in adults. Surgical resection followed by radiotherapy and chemotherapy, mainly with temozolomide (TMZ), is the chosen treatment for this type of tumor. However, the average survival of patients is around 15 months. Novel approa...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Associação Brasileira de Divulgação Científica
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9394692/ https://www.ncbi.nlm.nih.gov/pubmed/36000612 http://dx.doi.org/10.1590/1414-431X2022e12076 |
_version_ | 1784771534417559552 |
---|---|
author | Netto, J.B. Melo, E.S.A. Oliveira, A.G.S. Sousa, L.R. Santiago, L.R. Santos, D.M. Chagas, R.C.R. Gonçalves, A.S. Thomé, R.G. Santos, H.B. Reis, R.M. Ribeiro, R.I.M.A. |
author_facet | Netto, J.B. Melo, E.S.A. Oliveira, A.G.S. Sousa, L.R. Santiago, L.R. Santos, D.M. Chagas, R.C.R. Gonçalves, A.S. Thomé, R.G. Santos, H.B. Reis, R.M. Ribeiro, R.I.M.A. |
author_sort | Netto, J.B. |
collection | PubMed |
description | Glioblastoma is the most prevalent and malignant brain tumor identified in adults. Surgical resection followed by radiotherapy and chemotherapy, mainly with temozolomide (TMZ), is the chosen treatment for this type of tumor. However, the average survival of patients is around 15 months. Novel approaches to glioblastoma treatment are greatly needed. Here, we aimed to investigate the anti-glioblastoma effect of the combination of matteucinol (Mat) (dihydroxyflavanone derived from Miconia chamissois Naudin) with the chemotherapeutic TMZ in vitro using tumor (U-251MG) and normal astrocyte (NHA) cell lines and in vivo using the chick embryo chorioallantoic membrane (CAM) assay. The combination was cytotoxic and selective for tumor cells (28 μg/mL Mat and 9.71 μg/mL TMZ). Additionally, the combination did not alter cell adhesion but caused morphological changes characteristic of apoptosis in vitro. Notably, the combination was also able to reduce tumor growth in the chick embryo model (CAM assay). The docking results showed that Mat was the best ligand to the cell death membrane receptor TNFR1 and to TNFR1/TMZ complex, suggesting that these two molecules may be working together increasing their potential. In conclusion, Mat-TMZ can be a good candidate for pharmacokinetic studies in view of clinical use for the treatment of glioblastoma. |
format | Online Article Text |
id | pubmed-9394692 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Associação Brasileira de Divulgação Científica |
record_format | MEDLINE/PubMed |
spelling | pubmed-93946922022-08-23 Matteucinol combined with temozolomide inhibits glioblastoma proliferation, invasion, and progression: an in vitro, in silico, and in vivo study Netto, J.B. Melo, E.S.A. Oliveira, A.G.S. Sousa, L.R. Santiago, L.R. Santos, D.M. Chagas, R.C.R. Gonçalves, A.S. Thomé, R.G. Santos, H.B. Reis, R.M. Ribeiro, R.I.M.A. Braz J Med Biol Res Research Article Glioblastoma is the most prevalent and malignant brain tumor identified in adults. Surgical resection followed by radiotherapy and chemotherapy, mainly with temozolomide (TMZ), is the chosen treatment for this type of tumor. However, the average survival of patients is around 15 months. Novel approaches to glioblastoma treatment are greatly needed. Here, we aimed to investigate the anti-glioblastoma effect of the combination of matteucinol (Mat) (dihydroxyflavanone derived from Miconia chamissois Naudin) with the chemotherapeutic TMZ in vitro using tumor (U-251MG) and normal astrocyte (NHA) cell lines and in vivo using the chick embryo chorioallantoic membrane (CAM) assay. The combination was cytotoxic and selective for tumor cells (28 μg/mL Mat and 9.71 μg/mL TMZ). Additionally, the combination did not alter cell adhesion but caused morphological changes characteristic of apoptosis in vitro. Notably, the combination was also able to reduce tumor growth in the chick embryo model (CAM assay). The docking results showed that Mat was the best ligand to the cell death membrane receptor TNFR1 and to TNFR1/TMZ complex, suggesting that these two molecules may be working together increasing their potential. In conclusion, Mat-TMZ can be a good candidate for pharmacokinetic studies in view of clinical use for the treatment of glioblastoma. Associação Brasileira de Divulgação Científica 2022-08-22 /pmc/articles/PMC9394692/ /pubmed/36000612 http://dx.doi.org/10.1590/1414-431X2022e12076 Text en https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Netto, J.B. Melo, E.S.A. Oliveira, A.G.S. Sousa, L.R. Santiago, L.R. Santos, D.M. Chagas, R.C.R. Gonçalves, A.S. Thomé, R.G. Santos, H.B. Reis, R.M. Ribeiro, R.I.M.A. Matteucinol combined with temozolomide inhibits glioblastoma proliferation, invasion, and progression: an in vitro, in silico, and in vivo study |
title | Matteucinol combined with temozolomide inhibits glioblastoma proliferation, invasion, and progression: an in vitro, in silico, and in vivo study |
title_full | Matteucinol combined with temozolomide inhibits glioblastoma proliferation, invasion, and progression: an in vitro, in silico, and in vivo study |
title_fullStr | Matteucinol combined with temozolomide inhibits glioblastoma proliferation, invasion, and progression: an in vitro, in silico, and in vivo study |
title_full_unstemmed | Matteucinol combined with temozolomide inhibits glioblastoma proliferation, invasion, and progression: an in vitro, in silico, and in vivo study |
title_short | Matteucinol combined with temozolomide inhibits glioblastoma proliferation, invasion, and progression: an in vitro, in silico, and in vivo study |
title_sort | matteucinol combined with temozolomide inhibits glioblastoma proliferation, invasion, and progression: an in vitro, in silico, and in vivo study |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9394692/ https://www.ncbi.nlm.nih.gov/pubmed/36000612 http://dx.doi.org/10.1590/1414-431X2022e12076 |
work_keys_str_mv | AT nettojb matteucinolcombinedwithtemozolomideinhibitsglioblastomaproliferationinvasionandprogressionaninvitroinsilicoandinvivostudy AT meloesa matteucinolcombinedwithtemozolomideinhibitsglioblastomaproliferationinvasionandprogressionaninvitroinsilicoandinvivostudy AT oliveiraags matteucinolcombinedwithtemozolomideinhibitsglioblastomaproliferationinvasionandprogressionaninvitroinsilicoandinvivostudy AT sousalr matteucinolcombinedwithtemozolomideinhibitsglioblastomaproliferationinvasionandprogressionaninvitroinsilicoandinvivostudy AT santiagolr matteucinolcombinedwithtemozolomideinhibitsglioblastomaproliferationinvasionandprogressionaninvitroinsilicoandinvivostudy AT santosdm matteucinolcombinedwithtemozolomideinhibitsglioblastomaproliferationinvasionandprogressionaninvitroinsilicoandinvivostudy AT chagasrcr matteucinolcombinedwithtemozolomideinhibitsglioblastomaproliferationinvasionandprogressionaninvitroinsilicoandinvivostudy AT goncalvesas matteucinolcombinedwithtemozolomideinhibitsglioblastomaproliferationinvasionandprogressionaninvitroinsilicoandinvivostudy AT thomerg matteucinolcombinedwithtemozolomideinhibitsglioblastomaproliferationinvasionandprogressionaninvitroinsilicoandinvivostudy AT santoshb matteucinolcombinedwithtemozolomideinhibitsglioblastomaproliferationinvasionandprogressionaninvitroinsilicoandinvivostudy AT reisrm matteucinolcombinedwithtemozolomideinhibitsglioblastomaproliferationinvasionandprogressionaninvitroinsilicoandinvivostudy AT ribeirorima matteucinolcombinedwithtemozolomideinhibitsglioblastomaproliferationinvasionandprogressionaninvitroinsilicoandinvivostudy |