Cargando…
Atrous residual convolutional neural network based on U-Net for retinal vessel segmentation
Extracting features of retinal vessels from fundus images plays an essential role in computer-aided diagnosis of diseases, such as diabetes, hypertension, and cerebrovascular diseases. Although a number of deep learning-based methods have been used in this field, the accuracy of retinal vessel segme...
Autores principales: | Wu, Jin, Liu, Yong, Zhu, Yuanpei, Li, Zun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9394801/ https://www.ncbi.nlm.nih.gov/pubmed/35994494 http://dx.doi.org/10.1371/journal.pone.0273318 |
Ejemplares similares
-
Retinal Vessel Segmentation Algorithm Based on Residual Convolution Neural Network
por: Xu, Shuang, et al.
Publicado: (2021) -
TCU-Net: Transformer Embedded in Convolutional U-Shaped Network for Retinal Vessel Segmentation
por: Shi, Zidi, et al.
Publicado: (2023) -
PRAPNet: A Parallel Residual Atrous Pyramid Network for Polyp Segmentation
por: Han, Jubao, et al.
Publicado: (2022) -
Automatic lesion segmentation using atrous convolutional deep neural networks in dermoscopic skin cancer images
por: Kaur, Ranpreet, et al.
Publicado: (2022) -
Atrous Convolutions and Residual GRU Based Architecture for Matching Power Demand with Supply
por: Khan, Samee Ullah, et al.
Publicado: (2021)